diff --git a/docs/_build/doctrees/environment.pickle b/docs/_build/doctrees/environment.pickle index 89f87c4..94f6e46 100644 Binary files a/docs/_build/doctrees/environment.pickle and b/docs/_build/doctrees/environment.pickle differ diff --git a/docs/_build/doctrees/examples.doctree b/docs/_build/doctrees/examples.doctree index 58bd083..8896a1c 100644 Binary files a/docs/_build/doctrees/examples.doctree and b/docs/_build/doctrees/examples.doctree differ diff --git a/docs/_build/doctrees/index.doctree b/docs/_build/doctrees/index.doctree index a70d7e4..64f611a 100644 Binary files a/docs/_build/doctrees/index.doctree and b/docs/_build/doctrees/index.doctree differ diff --git a/docs/_build/doctrees/installation.doctree b/docs/_build/doctrees/installation.doctree index 417b6ba..117a17a 100644 Binary files a/docs/_build/doctrees/installation.doctree and b/docs/_build/doctrees/installation.doctree differ diff --git a/docs/_build/doctrees/references.doctree b/docs/_build/doctrees/references.doctree index 6e2d1d2..280cd20 100644 Binary files a/docs/_build/doctrees/references.doctree and b/docs/_build/doctrees/references.doctree differ diff --git a/docs/_build/doctrees/source/Displacement_strain_planet.B1986_nmax.doctree b/docs/_build/doctrees/source/Displacement_strain_planet.B1986_nmax.doctree index 2e271f1..0c6960f 100644 Binary files a/docs/_build/doctrees/source/Displacement_strain_planet.B1986_nmax.doctree and b/docs/_build/doctrees/source/Displacement_strain_planet.B1986_nmax.doctree differ diff --git a/docs/_build/doctrees/source/Displacement_strain_planet.Displacement_strain.doctree b/docs/_build/doctrees/source/Displacement_strain_planet.Displacement_strain.doctree index db81b6b..90ffd97 100644 Binary files a/docs/_build/doctrees/source/Displacement_strain_planet.Displacement_strain.doctree and b/docs/_build/doctrees/source/Displacement_strain_planet.Displacement_strain.doctree differ diff --git a/docs/_build/doctrees/source/Displacement_strain_planet.doctree b/docs/_build/doctrees/source/Displacement_strain_planet.doctree index 9c8523e..ee31fe8 100644 Binary files a/docs/_build/doctrees/source/Displacement_strain_planet.doctree and b/docs/_build/doctrees/source/Displacement_strain_planet.doctree differ diff --git a/docs/_build/html/_sources/examples.rst.txt b/docs/_build/html/_sources/examples.rst.txt index ea89d8f..4a15fbc 100644 --- a/docs/_build/html/_sources/examples.rst.txt +++ b/docs/_build/html/_sources/examples.rst.txt @@ -8,7 +8,7 @@ Mars ---- ``Mars_crust_displacement.py`` - A script that demonstrates how to calculate the moho-relief on Mars using global gravity and topography data. The moho relief is splited in an isostatic part and a displacement part, which depends on the elastic thickness of the lithosphere. The script then computes the principal horizontal strains and their directions associated with the displacement. + A script that demonstrates how to calculate the moho-relief on Mars using global gravity and topography data. The moho relief is splited in an isostatic part and a displacement part, which depends on the elastic thickness of the lithosphere. The script then computes the principal horizontal strains and their directions given the estimated displacement. ``Mars_SouthPolarCap_displacement.py`` A script that demonstrates how to calculate iteratively the flexure underneath the south polar cap of Mars as a function of elastic thickness and ice density. This computation is similar to that done in e.g., Broquet et al. (2021), in review to JGR:Planets. @@ -16,8 +16,11 @@ Mars ``Run_demo.ipynb`` |ImageLink|_ A jupyter notebook that shows many of the functionalities of Displacement_strain_planet using Mars as an example: moho-relief calculations under various assumptions, including Airy or Pratt isostasy, displacement calculations due to a mantle plume underneath Tharsis or due to internal loading in phase with the surface topography, strain calculations. +Venus +------ + ``Venus_crust_displacement.py`` - A script that demonstrates how to calculate the moho-relief on Venus using global gravity and topography data. The moho relief is splited in an isostatic part and a displacement part, which depends on the elastic thickness of the lithosphere. The script then computes the principal horizontal strains and their directions associated with the displacement. + A script that demonstrates how to calculate the moho-relief on Venus using global gravity and topography data. The moho relief is splited in an isostatic part and a displacement part, which depends on the elastic thickness of the lithosphere. The script then computes the principal horizontal strains and their directions given the estimated displacement. .. |ImageLink| image:: ../misc/link1.svg :width: 20 diff --git a/docs/_build/html/_sources/index.rst.txt b/docs/_build/html/_sources/index.rst.txt index 2ee1df0..1bb8454 100644 --- a/docs/_build/html/_sources/index.rst.txt +++ b/docs/_build/html/_sources/index.rst.txt @@ -19,9 +19,9 @@ Displacement_strain_planet Displacement_strain_planet provides several functions and example scripts for generating crustal thickness, displacement, gravity, lateral density variations, stress, and strain maps on a planet given a set of input constraints such as from observed gravity and topography data. -These functions solve the `Banerdt (1986) `_ system of equations under different assumptions. The model links 8 parameters: the topography, geoid at the surface, geoid at the moho depth, net acting load on the lithosphere, tangential load potential, flexure of the lithosphere, crustal thickness variations, and internal density variations. Minor corrections have been made in the geoid equations, through 5 equations. All is required is that the user specifies 3 constraints and the model will solve for all other parameters. +These functions solve the `Banerdt (1986) `_ system of equations under different assumptions. The model links 8 parameters: the topography, geoid at the surface, geoid at the moho depth, net acting load on the lithosphere, tangential load potential, flexure of the lithosphere, crustal thickness variations, and internal density variations, through 5 equations. Minor corrections have been made to the geoid equations and displacement equations following `Beuthe (2008) `_. All is required is that the user specifies 3 constraints and the model will solve for all other parameters. -Various improvements have been made to the model including the possibility to account for finite-amplitude correction and filtering `(Wieczorek & Phillips, 1998) `_, lateral density variations at any arbitrary depth and within the surface or moho-relief `(Wieczorek et al., 2013) `_, and density difference between the surface topography and crust `(Broquet & Wieczorek, 2019) `_. +Various improvements have been made to the model, including the possibility to account for finite-amplitude correction and filtering `(Wieczorek & Phillips, 1998) `_, lateral density variations at any arbitrary depth and within the surface or moho-relief `(Wieczorek et al., 2013) `_, and density difference between the surface topography and crust `(Broquet & Wieczorek, 2019) `_. This routine has many applications and is highly versatile, and you can for example: @@ -35,4 +35,4 @@ This routine has many applications and is highly versatile, and you can for exam * Compute Legendre polynomial first and second order derivatives. -In addition to these functions, an example script is provided that will solve for the moho-relief on Mars and estimate the principal strains on the planet as a function of the input elastic thickness. A jupyter notebook is also added with more information on estimating the moho-relief on Mars, assuming Airy or Pratt isostasy, the displacement due to a mantle plume underneath Tharsis or due to internal loading in phase with the surface topography. \ No newline at end of file +In addition to these functions, two example scripts are provided and will solve for the moho-relief on Mars & Venus, and estimate the principal strains on each planets as a function of the input elastic thickness. A jupyter notebook is also added with more information on estimating the moho-relief on Mars, assuming Airy or Pratt isostasy, the displacement due to a mantle plume underneath Tharsis or due to internal loading in phase with the surface topography. \ No newline at end of file diff --git a/docs/_build/html/_sources/references.rst.txt b/docs/_build/html/_sources/references.rst.txt index 3d5681b..9565ddb 100644 --- a/docs/_build/html/_sources/references.rst.txt +++ b/docs/_build/html/_sources/references.rst.txt @@ -7,6 +7,8 @@ doi:\ `10.1029/JB091iB01p00403 `__. +Beuthe, M. (2008). Thin elastic shells with variable thickness for lithospheric flexure of one-plate planets. *Geophysical Journal International*, 172.2, pp. 817–841, doi:\ `10.1111/j.1365-246X.2007.03671.x `__. + Knapmeyer, M. et al. (2006). Working models for spatial distribution and level of Mars’ seismicity. *Journal of Geophysical Research*, 111.E11006, doi:\ `10.1029/2006JE002708 `__. diff --git a/docs/_build/html/_static/basic.css b/docs/_build/html/_static/basic.css index 912859b..aa9df31 100644 --- a/docs/_build/html/_static/basic.css +++ b/docs/_build/html/_static/basic.css @@ -819,7 +819,7 @@ div.code-block-caption code { table.highlighttable td.linenos, span.linenos, -div.highlight span.gp { /* gp: Generic.Prompt */ +div.doctest > div.highlight span.gp { /* gp: Generic.Prompt */ user-select: none; -webkit-user-select: text; /* Safari fallback only */ -webkit-user-select: none; /* Chrome/Safari */ diff --git a/docs/_build/html/_static/doctools.js b/docs/_build/html/_static/doctools.js index 8cbf1b1..61ac9d2 100644 --- a/docs/_build/html/_static/doctools.js +++ b/docs/_build/html/_static/doctools.js @@ -301,14 +301,12 @@ var Documentation = { window.location.href = prevHref; return false; } - break; case 39: // right var nextHref = $('link[rel="next"]').prop('href'); if (nextHref) { window.location.href = nextHref; return false; } - break; } } }); diff --git a/docs/_build/html/_static/searchtools.js b/docs/_build/html/_static/searchtools.js index 8eb1421..e09f926 100644 --- a/docs/_build/html/_static/searchtools.js +++ b/docs/_build/html/_static/searchtools.js @@ -276,7 +276,7 @@ var Search = { setTimeout(function() { displayNextItem(); }, 5); - } else { + } else if (DOCUMENTATION_OPTIONS.HAS_SOURCE) { $.ajax({url: requestUrl, dataType: "text", complete: function(jqxhr, textstatus) { @@ -289,6 +289,12 @@ var Search = { displayNextItem(); }, 5); }}); + } else { + // no source available, just display title + Search.output.append(listItem); + setTimeout(function() { + displayNextItem(); + }, 5); } } // search finished, update title and status message diff --git a/docs/_build/html/examples.html b/docs/_build/html/examples.html index 99888fa..6dfe267 100644 --- a/docs/_build/html/examples.html +++ b/docs/_build/html/examples.html @@ -94,16 +94,17 @@ -

Getting Started

+

Getting Started

-

Reference Documentation

+

Reference Documentation

@@ -180,13 +181,18 @@

Examples

Mars

-
Mars_crust_displacement.py

A script that demonstrates how to calculate the moho-relief on Mars using global gravity and topography data. The moho relief is splited in an isostatic part and a displacement part, which depends on the elastic thickness of the lithosphere. The script then computes the principal horizontal strains and their directions associated with the displacement.

+
Mars_crust_displacement.py

A script that demonstrates how to calculate the moho-relief on Mars using global gravity and topography data. The moho relief is splited in an isostatic part and a displacement part, which depends on the elastic thickness of the lithosphere. The script then computes the principal horizontal strains and their directions given the estimated displacement.

Mars_SouthPolarCap_displacement.py

A script that demonstrates how to calculate iteratively the flexure underneath the south polar cap of Mars as a function of elastic thickness and ice density. This computation is similar to that done in e.g., Broquet et al. (2021), in review to JGR:Planets.

Run_demo.ipynb ImageLink

A jupyter notebook that shows many of the functionalities of Displacement_strain_planet using Mars as an example: moho-relief calculations under various assumptions, including Airy or Pratt isostasy, displacement calculations due to a mantle plume underneath Tharsis or due to internal loading in phase with the surface topography, strain calculations.

-
Venus_crust_displacement.py

A script that demonstrates how to calculate the moho-relief on Venus using global gravity and topography data. The moho relief is splited in an isostatic part and a displacement part, which depends on the elastic thickness of the lithosphere. The script then computes the principal horizontal strains and their directions associated with the displacement.

+
+ +
+

Venus

+
+
Venus_crust_displacement.py

A script that demonstrates how to calculate the moho-relief on Venus using global gravity and topography data. The moho relief is splited in an isostatic part and a displacement part, which depends on the elastic thickness of the lithosphere. The script then computes the principal horizontal strains and their directions given the estimated displacement.

diff --git a/docs/_build/html/genindex.html b/docs/_build/html/genindex.html index d1c37d1..7677eb9 100644 --- a/docs/_build/html/genindex.html +++ b/docs/_build/html/genindex.html @@ -92,13 +92,13 @@ -

Getting Started

+

Getting Started

-

Reference Documentation

+

Reference Documentation

diff --git a/docs/_build/html/index.html b/docs/_build/html/index.html index b5f4cf4..a5f1e3f 100644 --- a/docs/_build/html/index.html +++ b/docs/_build/html/index.html @@ -93,13 +93,13 @@ -

Getting Started

+

Getting Started

-

Reference Documentation

+

Reference Documentation

@@ -174,8 +174,8 @@

Displacement_strain_planet

Displacement_strain_planet provides several functions and example scripts for generating crustal thickness, displacement, gravity, lateral density variations, stress, and strain maps on a planet given a set of input constraints such as from observed gravity and topography data.

-

These functions solve the Banerdt (1986) system of equations under different assumptions. The model links 8 parameters: the topography, geoid at the surface, geoid at the moho depth, net acting load on the lithosphere, tangential load potential, flexure of the lithosphere, crustal thickness variations, and internal density variations. Minor corrections have been made in the geoid equations, through 5 equations. All is required is that the user specifies 3 constraints and the model will solve for all other parameters.

-

Various improvements have been made to the model including the possibility to account for finite-amplitude correction and filtering (Wieczorek & Phillips, 1998), lateral density variations at any arbitrary depth and within the surface or moho-relief (Wieczorek et al., 2013), and density difference between the surface topography and crust (Broquet & Wieczorek, 2019).

+

These functions solve the Banerdt (1986) system of equations under different assumptions. The model links 8 parameters: the topography, geoid at the surface, geoid at the moho depth, net acting load on the lithosphere, tangential load potential, flexure of the lithosphere, crustal thickness variations, and internal density variations, through 5 equations. Minor corrections have been made to the geoid equations and displacement equations following Beuthe (2008). All is required is that the user specifies 3 constraints and the model will solve for all other parameters.

+

Various improvements have been made to the model, including the possibility to account for finite-amplitude correction and filtering (Wieczorek & Phillips, 1998), lateral density variations at any arbitrary depth and within the surface or moho-relief (Wieczorek et al., 2013), and density difference between the surface topography and crust (Broquet & Wieczorek, 2019).

This routine has many applications and is highly versatile, and you can for example:

  • Compute the relief along the crust-mantle interface based on the input constraints (3 constraints are required, e.g., 1. and 2. the model should match the observed gravity and topography of the planet 3. there are no lateral variations in density).

  • @@ -184,7 +184,7 @@

    Displacement_strain_planetGetting Started

    +

    Getting Started

    -

    Reference Documentation

    +

    Reference Documentation

    diff --git a/docs/_build/html/objects.inv b/docs/_build/html/objects.inv index 201c62d..8ecf786 100644 Binary files a/docs/_build/html/objects.inv and b/docs/_build/html/objects.inv differ diff --git a/docs/_build/html/py-modindex.html b/docs/_build/html/py-modindex.html index 2ad965e..7cd0cce 100644 --- a/docs/_build/html/py-modindex.html +++ b/docs/_build/html/py-modindex.html @@ -95,13 +95,13 @@ -

    Getting Started

    +

    Getting Started

    -

    Reference Documentation

    +

    Reference Documentation

    diff --git a/docs/_build/html/references.html b/docs/_build/html/references.html index 801ad58..af6aa17 100644 --- a/docs/_build/html/references.html +++ b/docs/_build/html/references.html @@ -94,13 +94,13 @@ -

    Getting Started

    +

    Getting Started

    -

    Reference Documentation

    +

    Reference Documentation

    @@ -174,6 +174,7 @@

    References10.1029/JB091iB01p00403.

    Broquet, A. and M. A. Wieczorek (2019). The Gravitational signature of Martian volcanoes. Journal of Geophysical Research: Planets, 124.8, pp. 2054–2086, doi:10.1029/2019JE005959.

    +

    Beuthe, M. (2008). Thin elastic shells with variable thickness for lithospheric flexure of one-plate planets. Geophysical Journal International, 172.2, pp. 817–841, doi:10.1111/j.1365-246X.2007.03671.x.

    Knapmeyer, M. et al. (2006). Working models for spatial distribution and level of Mars’ seismicity. Journal of Geophysical Research, 111.E11006, doi:10.1029/2006JE002708.

    Wieczorek, M. A. and R. J. Phillips (1998). Potential anomalies on a sphere: Applications to the thickness of the lunar crust. Journal of Geophysical Research: Planets, 103.E1, pp. 1715–1724, diff --git a/docs/_build/html/search.html b/docs/_build/html/search.html index 3109dee..4fc1005 100644 --- a/docs/_build/html/search.html +++ b/docs/_build/html/search.html @@ -95,13 +95,13 @@ -

    Getting Started

    +

    Getting Started

    -

    Reference Documentation

    +

    Reference Documentation

    diff --git a/docs/_build/html/searchindex.js b/docs/_build/html/searchindex.js index 019b486..f3d23b0 100644 --- a/docs/_build/html/searchindex.js +++ b/docs/_build/html/searchindex.js @@ -1 +1 @@ -Search.setIndex({docnames:["examples","index","installation","references","source/Displacement_strain_planet","source/Displacement_strain_planet.B1986_nmax","source/Displacement_strain_planet.Displacement_strain"],envversion:{"sphinx.domains.c":2,"sphinx.domains.changeset":1,"sphinx.domains.citation":1,"sphinx.domains.cpp":4,"sphinx.domains.index":1,"sphinx.domains.javascript":2,"sphinx.domains.math":2,"sphinx.domains.python":3,"sphinx.domains.rst":2,"sphinx.domains.std":2,sphinx:56},filenames:["examples.rst","index.rst","installation.rst","references.rst","source/Displacement_strain_planet.rst","source/Displacement_strain_planet.B1986_nmax.rst","source/Displacement_strain_planet.Displacement_strain.rst"],objects:{"":{Displacement_strain_planet:[4,0,0,"-"]},"Displacement_strain_planet.B1986_nmax":{DownContFilter:[5,1,1,""],Thin_shell_matrix:[5,1,1,""],Thin_shell_matrix_nmax:[5,1,1,""],constraint_test_symb:[5,1,1,""],corr_nmax_drho:[5,1,1,""]},"Displacement_strain_planet.Displacement_strain":{Displacement_strains:[6,1,1,""],Plt_tecto_Mars:[6,1,1,""],Principal_strainstress_angle:[6,1,1,""],SH_deriv:[6,1,1,""],SH_deriv_store:[6,1,1,""]},Displacement_strain_planet:{B1986_nmax:[5,0,0,"-"],Displacement_strain:[6,0,0,"-"],Displacement_strains:[4,1,1,""],DownContFilter:[4,1,1,""],Plt_tecto_Mars:[4,1,1,""],Principal_strainstress_angle:[4,1,1,""],SH_deriv:[4,1,1,""],SH_deriv_store:[4,1,1,""],Thin_shell_matrix:[4,1,1,""],Thin_shell_matrix_nmax:[4,1,1,""],corr_nmax_drho:[4,1,1,""]}},objnames:{"0":["py","module","Python module"],"1":["py","function","Python function"]},objtypes:{"0":"py:module","1":"py:function"},terms:{"0":[4,5,6],"1":[1,2,4,5,6],"10":3,"1029":3,"103":3,"111":3,"1126":3,"1231530":3,"124":3,"150000":[4,5],"150e3":[4,5],"1715":3,"1724":3,"180":[4,6],"1986":[1,3,4,5,6],"1998":[1,3,4,5],"2":[1,4,5,6],"2006":[3,4,6],"2006je002708":3,"2013":[1,3,4],"2018":3,"2018gc007529":3,"2019":[1,3,4],"2019je005959":3,"2021":0,"2054":3,"2086":3,"250":[4,5],"3":[1,4,5],"339":3,"360":[4,6],"4":2,"403":3,"419":3,"5":[1,4,5],"50":[4,5],"50000":[4,5],"500000":[4,5],"500e3":[4,5],"50e3":[4,5],"671":3,"675":3,"7":2,"75":[4,6],"8":[1,3,4,5],"91":3,"97je03136":3,"boolean":[4,6],"case":[4,5],"default":[4,5,6],"do":[2,4,5],"float":[4,5,6],"function":[0,1,4,5,6],"int":[4,5,6],"long":3,"return":[4,5,6],"true":[4,5,6],A:[0,1,3],If:[2,4,5,6],In:[0,1],The:[0,1,2,3,4,5],These:[1,4],To:[0,2],a12:[4,6],a13:[4,6],a14:[4,6],a16:[4,6],a17:[4,6],a18:[4,6],a19:[4,6],a20:[4,6],a21:[4,6],a_lm:[4,5,6],ab:2,about:[4,6],abov:[2,4,5],access:[0,2],account:[1,4,5],act:1,activ:2,ad:[1,4,5],add:[4,6],add_arrai:[4,5],add_equ:[4,5],addit:1,after:2,airi:[0,1],al:[0,1,3,4,5,6],algorithm:[4,5],all:[1,4,5,6],along:1,also:[1,2],amplitud:[1,4,5],ampltiud:[4,5],an:[0,1],angl:[4,6],ani:[1,4],anomali:3,appli:[4,5],applic:[1,3],ar:[1,2,5],arbitrari:[1,4],arr:5,arr_symb:5,arrai:[4,5,6],associ:[0,1],assum:[1,4,5],assumpt:[0,1,4],attract:[4,5],averag:[4,5],ax:[4,6],axi:[4,6],b1986_nmax:4,b1:3,b:3,banerdt:[1,3,4,5,6],base:1,base_drho:[4,5],been:[1,4],befor:[4,5],bend:[4,6],between:[1,4,5],bool:[4,5,6],broquet:[0,1,3,4],c:[2,4,5],c_lm:[4,5],calcul:[0,4,5,6],can:[1,2,4,5],cap:0,cd:2,clone:[0,2],code:[2,4,5],coeffici:[4,5,6],colat_max:[4,6],colat_min:[4,6],colatitud:[4,6],color:[4,6],com:2,command:2,compon:[1,4,5,6],compress:[4,6],compression:[4,6],compression_col:[4,6],comput:[0,1,4,5,6],conda:2,constraint:[1,4,5],constraint_test:5,constraint_test_symb:5,continu:[4,5],contrast:[4,5],converg:[4,5],corr_nmax_drho:[4,5],correct:[1,4,5,6],crust:[1,3,4,5],crustal:[1,4,5],current:2,curvatur:[4,5],d_relief:[4,5],data:[0,1,4,6],dataset:[4,6],dc_lm:[4,5],decreas:[4,6],deform:[4,6],degre:[4,5,6],delta:[4,5],delta_max:[4,5],delta_out:[4,5],demonstr:0,densiti:[0,1,4,5],density_var:[4,5],depend:[0,2,5],depth:[1,4,5],deriv:[1,4,5,6],detail:2,determin:[1,4,6],differ:[1,4,5],direct:[0,1,4,6],directori:[0,2],displac:[0,1,2,4,5,6],displacement_strain:4,displacement_strain_planet:[0,2],distribut:3,doi:3,done:0,downcontfilt:[4,5],download:[0,2],downward:[4,5],dr_lm:[4,5],drho:[4,5],drho_corr:[4,5],drho_lm:[4,5],drhom_lm:[4,5],due:[0,1],e11006:3,e1:3,e:[0,1,2,4,5,6],easiest:2,either:[0,2,4,5],elast:[0,1,4,5,6],elong:[4,6],enter:2,entir:[0,2,4,6],environ:2,eps_phi:[4,6],eps_theta:[4,6],equal:[4,5],equat:[1,4,5,6],estim:1,et:[0,1,3,4,5,6],exampl:[1,2,4],execut:2,explicitli:2,extens:[4,6],extension:[4,6],extension_col:[4,6],exterior:[4,5],factor:[4,6],fals:[4,5,6],fast:[4,5],featur:[4,6],field:[4,5,6],file:[0,2,4,6],filter:[1,4,5],filter_half:[4,5],filter_in:[4,5],find:[4,6],finit:[1,4,5],first:[1,4,5,6],first_inv:[4,5],flexur:[0,1],fly:4,folder:2,forg:2,format:[4,6],from:[0,1,2,4,6],g0:[4,5],g:[0,1],g_lm:[4,5],gc_lm:[4,5],gener:[1,4],geochemistri:3,geoid:[1,4,5],geophys:3,geosystem:3,git:2,github:[0,2],given:[1,4,6],global:0,grail:3,gravit:[3,4,5],graviti:[0,1,4],grid:[4,5,6],h_corr:[4,5],h_lm:[4,5],ha:1,half:[4,5],harmon:[3,4,5,6],have:[1,4],heavili:4,highli:1,horizont:[0,1,4,6],how:[0,2],http:2,i:5,ic:0,implic:3,improv:[1,4],includ:[0,1,4,5],inform:1,input:[1,4,5,6],instal:0,instead:[2,4,6],interfac:[1,4,5],intern:[0,1,3],invers:[4,5],investig:5,ipynb:[0,2],isostasi:[0,1],isostat:[0,4,5],iter:[0,4,5],iter_max:[4,5],j:3,jb091ib01p00403:3,jgr:0,journal:3,jupyt:[0,1,2],k:[4,6],kappa_phi:[4,6],kappa_theta:[4,6],kg:[4,5],knamey:[4,6],knampey:[4,6],knapmey:[3,6],l:[4,5],lambda:[4,5],lambdifi:[4,5],lambdify_func:[4,5],lambidfi:[4,5],larger:[4,5],later:[1,4,5],latitud:[4,6],least:[4,5],left:[4,6],legend:[4,6],legend_loc:[4,6],legend_show:[4,6],legendr:[1,4,6],less:[4,5],level:3,lib:2,linewidth:[4,6],link:[1,2],linux:2,list:5,lithospher:[0,1,4,5,6],lmax:[4,5,6],load:[0,1,3,4,5,6],locat:[0,4,6],lon_max:[4,6],lon_min:[4,6],longitud:[4,6],lower:[4,5],lunar:3,lw:[4,6],m:[3,4,5],ma:[4,5],maco:2,made:[1,4],mani:[0,1],mantl:[0,1,4,5],map:[1,4],mar:[1,3,4,6],mars_crust_displac:[0,2],mars_southpolarcap_displac:0,martian:3,mass:[4,5],match:1,matplotlib:[4,6],max_strain:[4,6],maximum:[4,5,6],mc:[4,5],mean:[4,5,6],mesched:3,meter:[4,5],method:2,might:2,min_strain:[4,6],minimum:[4,5,6],minor:1,model:[1,3,4],modifi:2,modul:2,modulu:[4,5,6],moho:[0,1,4,5],moho_lm:[4,5],moon:3,more:1,must:[0,2,4,5],n:[4,6],necessari:[0,2],net:[1,4,5],nmax:[4,5],none:[4,5,6],not_constraint:5,note:4,notebook:[0,1,2],npy:[4,6],npz:[4,6],number:[4,5],object:[4,6],observ:[1,4],occur:[4,5],omega:[4,6],omega_lm:[4,5],one:[2,4,5],onli:[2,4,6],only_deflec:[4,6],option:[4,5,6],order:[0,1,4,5,6],other:1,output:[4,5,6],over:[4,6],packag:2,paramet:[1,4,5,6],part:0,path:[4,6],phase:[0,1],phi:[4,6],phillip:[1,3,4,5],pip3:2,pip:[0,2],plan:2,planet:[0,1,2,3,4,5,6],plot:[4,6],plt_tecto_mar:[4,6],plume:[0,1],poisson:[4,5,6],polar:0,poloid:[4,5,6],polynomi:[1,4,6],posit:[4,6],possibl:[1,4,5],potenti:[1,3,4,5],pp:3,pratt:[0,1],prefactor:[4,6],prefer:2,presenc:[4,5],princip:[0,1,4,6],principal_angl:[4,6],principal_strainstress_angl:[4,6],print:[4,5,6],problem:[4,5],provid:[1,4],purpl:[4,6],py:[0,2],pyshtool:[2,4],python3:2,python:2,q_lm:[4,5],quiet:[4,5,6],r:[3,4,5,6],r_ref:[4,5],radian:[4,6],radiu:[4,5,6],ratio:[4,5,6],re:[4,5],recommend:[4,6],refer:[4,5],referenc:[4,5],reli:4,relief:[0,1,4,5],remov:[4,5],remove_equ:[4,5],repo:[0,2],repositori:2,requir:[1,2],research:3,resolut:[4,6],respect:[4,6],result:[4,5],reus:[4,5],review:0,rho_grid:[4,5],rhobar:[4,5],rhoc:[4,5],rhol:[4,5],rhom:[4,5],root:[4,5],routin:1,run:[0,2,4,5],run_demo:[0,2],s:[4,5,6],s_phi:[4,6],s_theta:[4,6],s_theta_phi:[4,6],same:[4,5,6],save:[4,6],scienc:3,script:[0,1,2,4],second:[1,2,4,6],see:0,seen:3,seismic:3,set:[1,2,4],setup:[4,5],sever:[1,4],sh_deriv:[4,6],sh_deriv_stor:[4,6],shape_grid:[4,5],shear:[4,6],sheet:[4,5],shell:4,should:1,show:0,shtool:3,signatur:3,similar:0,size:[4,5,6],solut:[4,5],solv:[1,4,5],some:4,sourc:2,south:0,spatial:3,specifi:1,sphere:[3,4,6],spheric:[3,4,5,6],splite:0,stop:[4,5],store:[4,5,6],str_symb:5,strain:[0,1,2,4,6],stress:[1,4,6],stress_phi:[4,6],stress_theta:[4,6],stress_theta_phi:[4,6],string:[4,5,6],structur:3,sum:[4,6],sum_strain:[4,6],support:3,suppress:[4,6],surfac:[0,1,4,5],symbol:5,sympi:5,system:[1,2,4,5],tangenti:[1,4,5,6],tau:[4,6],te:[4,5,6],tecton:[4,6],term:[4,5,6],than:[4,5],tharsi:[0,1],them:2,theta:[4,6],theta_phi:[4,6],thi:[0,1,2,4,5,6],thick:[0,1,3,4,5,6],thin:4,thin_shell_matrix:[4,5],thin_shell_matrix_nmax:[4,5],through:1,time:[4,5],tool:3,top_drho:[4,5],topographi:[0,1,4,5],twist:[4,6],two:2,type:[4,5],under:[0,1,4],underneath:[0,1],until:[4,5],up:2,upper:[4,5,6],upward:[4,5,6],us:[0,2,4,5],user:1,v:[4,5,6],valu:[4,5],vari:[4,5],variabl:5,variat:[1,4,5],variou:[0,1,4,5],venu:[0,3],venus_crust_displac:0,veri:[4,5],versatil:1,volcano:3,w:3,w_corr:[4,5],w_lm:[4,5,6],wa:2,wai:2,wavelength:3,wdc_corr:[4,5],we:4,when:[4,5,6],where:[4,5,6],wherea:2,which:[0,4,5,6],wieczorek:[1,3,4,5],within:[1,4,5],without:[4,5],work:[2,3],written:[4,5],y_lm:[4,6],y_lm_d1_p:[4,6],y_lm_d1_phi_a:[4,6],y_lm_d1_t:[4,6],y_lm_d1_theta_a:[4,6],y_lm_d2_p:[4,6],y_lm_d2_phi_a:[4,6],y_lm_d2_t:[4,6],y_lm_d2_theta_a:[4,6],y_lm_d2_thetaphi_a:[4,6],y_lm_d2_tp:[4,6],y_lm_save:[4,6],you:[0,1,2],young:[4,5,6],your:2},titles:["Examples","Displacement_strain_planet","Installation","References","Displacement_strain_planet package","Displacement_strain_planet.B1986_nmax module","Displacement_strain_planet.Displacement_strain module"],titleterms:{b1986_nmax:5,content:4,displacement_strain:6,displacement_strain_planet:[1,4,5,6],exampl:0,instal:2,mar:0,modul:[4,5,6],packag:4,refer:3,submodul:4}}) \ No newline at end of file +Search.setIndex({docnames:["examples","index","installation","references","source/Displacement_strain_planet","source/Displacement_strain_planet.B1986_nmax","source/Displacement_strain_planet.Displacement_strain"],envversion:{"sphinx.domains.c":2,"sphinx.domains.changeset":1,"sphinx.domains.citation":1,"sphinx.domains.cpp":3,"sphinx.domains.index":1,"sphinx.domains.javascript":2,"sphinx.domains.math":2,"sphinx.domains.python":3,"sphinx.domains.rst":2,"sphinx.domains.std":2,sphinx:56},filenames:["examples.rst","index.rst","installation.rst","references.rst","source/Displacement_strain_planet.rst","source/Displacement_strain_planet.B1986_nmax.rst","source/Displacement_strain_planet.Displacement_strain.rst"],objects:{"":{Displacement_strain_planet:[4,0,0,"-"]},"Displacement_strain_planet.B1986_nmax":{DownContFilter:[5,1,1,""],Thin_shell_matrix:[5,1,1,""],Thin_shell_matrix_nmax:[5,1,1,""],constraint_test_symb:[5,1,1,""],corr_nmax_drho:[5,1,1,""]},"Displacement_strain_planet.Displacement_strain":{Displacement_strains:[6,1,1,""],Plt_tecto_Mars:[6,1,1,""],Principal_strainstress_angle:[6,1,1,""],SH_deriv:[6,1,1,""],SH_deriv_store:[6,1,1,""]},Displacement_strain_planet:{B1986_nmax:[5,0,0,"-"],Displacement_strain:[6,0,0,"-"],Displacement_strains:[4,1,1,""],DownContFilter:[4,1,1,""],Plt_tecto_Mars:[4,1,1,""],Principal_strainstress_angle:[4,1,1,""],SH_deriv:[4,1,1,""],SH_deriv_store:[4,1,1,""],Thin_shell_matrix:[4,1,1,""],Thin_shell_matrix_nmax:[4,1,1,""],corr_nmax_drho:[4,1,1,""]}},objnames:{"0":["py","module","Python module"],"1":["py","function","Python function"]},objtypes:{"0":"py:module","1":"py:function"},terms:{"0":[4,5,6],"03671":3,"1":[1,2,4,5,6],"10":3,"1029":3,"103":3,"111":3,"1111":3,"1126":3,"1231530":3,"124":3,"1365":3,"150000":[4,5],"150e3":[4,5],"1715":3,"172":3,"1724":3,"180":[4,6],"1986":[1,3,4,5,6],"1998":[1,3,4,5],"2":[1,3,4,5,6],"2006":[3,4,6],"2006je002708":3,"2007":3,"2008":[1,3],"2013":[1,3,4],"2018":3,"2018gc007529":3,"2019":[1,3,4],"2019je005959":3,"2021":0,"2054":3,"2086":3,"246x":3,"250":[4,5],"3":[1,4,5],"339":3,"360":[4,6],"4":2,"403":3,"419":3,"5":[1,4,5],"50":[4,5],"50000":[4,5],"500000":[4,5],"500e3":[4,5],"50e3":[4,5],"671":3,"675":3,"7":2,"75":[4,6],"8":[1,3,4,5],"817":3,"841":3,"91":3,"97je03136":3,"boolean":[4,6],"case":[4,5],"default":[4,5,6],"do":[2,4,5],"float":[4,5,6],"function":[0,1,4,5,6],"int":[4,5,6],"long":3,"return":[4,5,6],"true":[4,5,6],A:[0,1,3],If:[2,4,5,6],In:[0,1],The:[0,1,2,3,4,5],These:[1,4],To:[0,2],a12:[4,6],a13:[4,6],a14:[4,6],a16:[4,6],a17:[4,6],a18:[4,6],a19:[4,6],a20:[4,6],a21:[4,6],a_lm:[4,5,6],ab:2,about:[4,6],abov:[2,4,5],access:[0,2],account:[1,4,5],act:1,activ:2,ad:[1,4,5],add:[4,6],add_arrai:[4,5],add_equ:[4,5],addit:1,after:2,airi:[0,1],al:[0,1,3,4,5,6],algorithm:[4,5],all:[1,4,5,6],along:1,also:[1,2],amplitud:[1,4,5],ampltiud:[4,5],an:0,angl:[4,6],ani:[1,4],anomali:3,appli:[4,5],applic:[1,3],ar:[1,2,5],arbitrari:[1,4],arr:5,arr_symb:5,arrai:[4,5,6],associ:1,assum:[1,4,5],assumpt:[0,1,4],attract:[4,5],averag:[4,5],ax:[4,6],axi:[4,6],b1986_nmax:4,b1:3,b:3,banerdt:[1,3,4,5,6],base:1,base_drho:[4,5],been:[1,4],befor:[4,5],bend:[4,6],between:[1,4,5],beuth:[1,3],bool:[4,5,6],broquet:[0,1,3,4],c:[2,4,5],c_lm:[4,5],calcul:[0,4,5,6],can:[1,2,4,5],cap:0,cd:2,clone:[0,2],code:[2,4,5],coeffici:[4,5,6],colat_max:[4,6],colat_min:[4,6],colatitud:[4,6],color:[4,6],com:2,command:2,compon:[1,4,5,6],compress:[4,6],compression:[4,6],compression_col:[4,6],comput:[0,1,4,5,6],conda:2,constraint:[1,4,5],constraint_test:5,constraint_test_symb:5,continu:[4,5],contrast:[4,5],converg:[4,5],corr_nmax_drho:[4,5],correct:[1,4,5,6],crust:[1,3,4,5],crustal:[1,4,5],current:2,curvatur:[4,5],d_relief:[4,5],data:[0,1,4,6],dataset:[4,6],dc_lm:[4,5],decreas:[4,6],deform:[4,6],degre:[4,5,6],delta:[4,5],delta_max:[4,5],delta_out:[4,5],demonstr:0,densiti:[0,1,4,5],density_var:[4,5],depend:[0,2,5],depth:[1,4,5],deriv:[1,4,5,6],detail:2,determin:[1,4,6],differ:[1,4,5],direct:[0,1,4,6],directori:[0,2],displac:[0,1,2,4,5,6],displacement_strain:4,displacement_strain_planet:[0,2],distribut:3,doi:3,done:0,downcontfilt:[4,5],download:[0,2],downward:[4,5],dr_lm:[4,5],drho:[4,5],drho_corr:[4,5],drho_lm:[4,5],drhom_lm:[4,5],due:[0,1],e11006:3,e1:3,e:[0,1,2,4,5,6],each:1,easiest:2,either:[0,2,4,5],elast:[0,1,3,4,5,6],elong:[4,6],enter:2,entir:[0,2,4,6],environ:2,eps_phi:[4,6],eps_theta:[4,6],equal:[4,5],equat:[1,4,5,6],estim:[0,1],et:[0,1,3,4,5,6],exampl:[1,2,4],execut:2,explicitli:2,extens:[4,6],extension:[4,6],extension_col:[4,6],exterior:[4,5],factor:[4,6],fals:[4,5,6],fast:[4,5],featur:[4,6],field:[4,5,6],file:[0,2,4,6],filter:[1,4,5],filter_half:[4,5],filter_in:[4,5],find:[4,6],finit:[1,4,5],first:[1,4,5,6],first_inv:[4,5],flexur:[0,1,3],fly:4,folder:2,follow:1,forg:2,format:[4,6],from:[0,1,2,4,6],g0:[4,5],g:[0,1],g_lm:[4,5],gc_lm:[4,5],gener:[1,4],geochemistri:3,geoid:[1,4,5],geophys:3,geosystem:3,git:2,github:[0,2],given:[0,1,4,6],global:0,grail:3,gravit:[3,4,5],graviti:[0,1,4],grid:[4,5,6],h_corr:[4,5],h_lm:[4,5],ha:1,half:[4,5],harmon:[3,4,5,6],have:[1,4],heavili:4,highli:1,horizont:[0,1,4,6],how:[0,2],http:2,i:5,ic:0,implic:3,improv:[1,4],includ:[0,1,4,5],inform:1,input:[1,4,5,6],instal:0,instead:[2,4,6],interfac:[1,4,5],intern:[0,1,3],invers:[4,5],investig:5,ipynb:[0,2],isostasi:[0,1],isostat:[0,4,5],iter:[0,4,5],iter_max:[4,5],j:3,jb091ib01p00403:3,jgr:0,journal:3,jupyt:[0,1,2],k:[4,6],kappa_phi:[4,6],kappa_theta:[4,6],kg:[4,5],knamey:[4,6],knampey:[4,6],knapmey:[3,6],l:[4,5],lambda:[4,5],lambdifi:[4,5],lambdify_func:[4,5],lambidfi:[4,5],larger:[4,5],later:[1,4,5],latitud:[4,6],least:[4,5],left:[4,6],legend:[4,6],legend_loc:[4,6],legend_show:[4,6],legendr:[1,4,6],less:[4,5],level:3,lib:2,linewidth:[4,6],link:[1,2],linux:2,list:5,lithospher:[0,1,3,4,5,6],lmax:[4,5,6],load:[0,1,3,4,5,6],locat:[0,4,6],lon_max:[4,6],lon_min:[4,6],longitud:[4,6],lower:[4,5],lunar:3,lw:[4,6],m:[3,4,5],ma:[4,5],maco:2,made:[1,4],mani:[0,1],mantl:[0,1,4,5],map:[1,4],mar:[1,3,4,6],mars_crust_displac:[0,2],mars_southpolarcap_displac:0,martian:3,mass:[4,5],match:1,matplotlib:[4,6],max_strain:[4,6],maximum:[4,5,6],mc:[4,5],mean:[4,5,6],mesched:3,meter:[4,5],method:2,might:2,min_strain:[4,6],minimum:[4,5,6],minor:1,model:[1,3,4],modifi:2,modul:2,modulu:[4,5,6],moho:[0,1,4,5],moho_lm:[4,5],moon:3,more:1,must:[0,2,4,5],n:[4,6],necessari:[0,2],net:[1,4,5],nmax:[4,5],none:[4,5,6],not_constraint:5,note:4,notebook:[0,1,2],npy:[4,6],npz:[4,6],number:[4,5],object:[4,6],observ:[1,4],occur:[4,5],omega:[4,6],omega_lm:[4,5],one:[2,3,4,5],onli:[2,4,6],only_deflec:[4,6],option:[4,5,6],order:[0,1,4,5,6],other:1,output:[4,5,6],over:[4,6],packag:2,paramet:[1,4,5,6],part:0,path:[4,6],phase:[0,1],phi:[4,6],phillip:[1,3,4,5],pip3:2,pip:[0,2],plan:2,planet:[0,1,2,3,4,5,6],plate:3,plot:[4,6],plt_tecto_mar:[4,6],plume:[0,1],poisson:[4,5,6],polar:0,poloid:[4,5,6],polynomi:[1,4,6],posit:[4,6],possibl:[1,4,5],potenti:[1,3,4,5],pp817:[],pp:3,pratt:[0,1],prefactor:[4,6],prefer:2,presenc:[4,5],princip:[0,1,4,6],principal_angl:[4,6],principal_strainstress_angl:[4,6],print:[4,5,6],problem:[4,5],provid:[1,4],purpl:[4,6],py:[0,2],pyshtool:[2,4],python3:2,python:2,q_lm:[4,5],quiet:[4,5,6],r:[3,4,5,6],r_ref:[4,5],radian:[4,6],radiu:[4,5,6],ratio:[4,5,6],re:[4,5],recommend:[4,6],refer:[4,5],referenc:[4,5],reli:4,relief:[0,1,4,5],remov:[4,5],remove_equ:[4,5],repo:[0,2],repositori:2,requir:[1,2],research:3,resolut:[4,6],respect:[4,6],result:[4,5],reus:[4,5],review:0,rho_grid:[4,5],rhobar:[4,5],rhoc:[4,5],rhol:[4,5],rhom:[4,5],root:[4,5],routin:1,run:[0,2,4,5],run_demo:[0,2],s:[4,5,6],s_phi:[4,6],s_theta:[4,6],s_theta_phi:[4,6],same:[4,5,6],save:[4,6],scienc:3,script:[0,1,2,4],second:[1,2,4,6],see:0,seen:3,seismic:3,set:[1,2,4],setup:[4,5],sever:[1,4],sh_deriv:[4,6],sh_deriv_stor:[4,6],shape_grid:[4,5],shear:[4,6],sheet:[4,5],shell:[3,4],should:1,show:0,shtool:3,signatur:3,similar:0,size:[4,5,6],solut:[4,5],solv:[1,4,5],some:4,sourc:2,south:0,spatial:3,specifi:1,sphere:[3,4,6],spheric:[3,4,5,6],splite:0,stop:[4,5],store:[4,5,6],str_symb:5,strain:[0,1,2,4,6],stress:[1,4,6],stress_phi:[4,6],stress_theta:[4,6],stress_theta_phi:[4,6],string:[4,5,6],structur:3,sum:[4,6],sum_strain:[4,6],support:3,suppress:[4,6],surfac:[0,1,4,5],symbol:5,sympi:5,system:[1,2,4,5],tangenti:[1,4,5,6],tau:[4,6],te:[4,5,6],tecton:[4,6],term:[4,5,6],than:[4,5],tharsi:[0,1],them:2,theta:[4,6],theta_phi:[4,6],thi:[0,1,2,4,5,6],thick:[0,1,3,4,5,6],thin:[3,4],thin_shell_matrix:[4,5],thin_shell_matrix_nmax:[4,5],through:1,time:[4,5],tool:3,top_drho:[4,5],topographi:[0,1,4,5],twist:[4,6],two:[1,2],type:[4,5],under:[0,1,4],underneath:[0,1],until:[4,5],up:2,upper:[4,5,6],upward:[4,5,6],us:[0,2,4,5],user:1,v:[4,5,6],valu:[4,5],vari:[4,5],variabl:[3,5],variat:[1,4,5],variou:[0,1,4,5],venu:[1,3],venus_crust_displac:0,veri:[4,5],versatil:1,volcano:3,w:3,w_corr:[4,5],w_lm:[4,5,6],wa:2,wai:2,wavelength:3,wdc_corr:[4,5],we:4,when:[4,5,6],where:[4,5,6],wherea:2,which:[0,4,5,6],wieczorek:[1,3,4,5],within:[1,4,5],without:[4,5],work:[2,3],written:[4,5],x:3,y_lm:[4,6],y_lm_d1_p:[4,6],y_lm_d1_phi_a:[4,6],y_lm_d1_t:[4,6],y_lm_d1_theta_a:[4,6],y_lm_d2_p:[4,6],y_lm_d2_phi_a:[4,6],y_lm_d2_t:[4,6],y_lm_d2_theta_a:[4,6],y_lm_d2_thetaphi_a:[4,6],y_lm_d2_tp:[4,6],y_lm_save:[4,6],you:[0,1,2],young:[4,5,6],your:2},titles:["Examples","Displacement_strain_planet","Installation","References","Displacement_strain_planet package","Displacement_strain_planet.B1986_nmax module","Displacement_strain_planet.Displacement_strain module"],titleterms:{b1986_nmax:5,content:4,displacement_strain:6,displacement_strain_planet:[1,4,5,6],exampl:0,instal:2,mar:0,modul:[4,5,6],packag:4,refer:3,submodul:4,venu:0}}) \ No newline at end of file diff --git a/docs/_build/html/source/Displacement_strain_planet.B1986_nmax.html b/docs/_build/html/source/Displacement_strain_planet.B1986_nmax.html index ca95d07..3acb30f 100644 --- a/docs/_build/html/source/Displacement_strain_planet.B1986_nmax.html +++ b/docs/_build/html/source/Displacement_strain_planet.B1986_nmax.html @@ -94,13 +94,13 @@ -

    Getting Started

    +

    Getting Started

    -

    Reference Documentation

    +

    Reference Documentation

    • Displacement_strain_planet package
      • Submodules
          diff --git a/docs/_build/html/source/Displacement_strain_planet.Displacement_strain.html b/docs/_build/html/source/Displacement_strain_planet.Displacement_strain.html index 29fb704..92910d2 100644 --- a/docs/_build/html/source/Displacement_strain_planet.Displacement_strain.html +++ b/docs/_build/html/source/Displacement_strain_planet.Displacement_strain.html @@ -93,13 +93,13 @@ -

          Getting Started

          +

          Getting Started

          -

          Reference Documentation

          +

          Reference Documentation

          • Displacement_strain_planet package
            • Submodules
                diff --git a/docs/_build/html/source/Displacement_strain_planet.html b/docs/_build/html/source/Displacement_strain_planet.html index 0331477..e7ffb95 100644 --- a/docs/_build/html/source/Displacement_strain_planet.html +++ b/docs/_build/html/source/Displacement_strain_planet.html @@ -94,13 +94,13 @@ -

                Getting Started

                +

                Getting Started

                -

                Reference Documentation

                +

                Reference Documentation

                • Displacement_strain_planet package
                  • Submodules
                      diff --git a/docs/examples.rst b/docs/examples.rst index ea89d8f..4a15fbc 100644 --- a/docs/examples.rst +++ b/docs/examples.rst @@ -8,7 +8,7 @@ Mars ---- ``Mars_crust_displacement.py`` - A script that demonstrates how to calculate the moho-relief on Mars using global gravity and topography data. The moho relief is splited in an isostatic part and a displacement part, which depends on the elastic thickness of the lithosphere. The script then computes the principal horizontal strains and their directions associated with the displacement. + A script that demonstrates how to calculate the moho-relief on Mars using global gravity and topography data. The moho relief is splited in an isostatic part and a displacement part, which depends on the elastic thickness of the lithosphere. The script then computes the principal horizontal strains and their directions given the estimated displacement. ``Mars_SouthPolarCap_displacement.py`` A script that demonstrates how to calculate iteratively the flexure underneath the south polar cap of Mars as a function of elastic thickness and ice density. This computation is similar to that done in e.g., Broquet et al. (2021), in review to JGR:Planets. @@ -16,8 +16,11 @@ Mars ``Run_demo.ipynb`` |ImageLink|_ A jupyter notebook that shows many of the functionalities of Displacement_strain_planet using Mars as an example: moho-relief calculations under various assumptions, including Airy or Pratt isostasy, displacement calculations due to a mantle plume underneath Tharsis or due to internal loading in phase with the surface topography, strain calculations. +Venus +------ + ``Venus_crust_displacement.py`` - A script that demonstrates how to calculate the moho-relief on Venus using global gravity and topography data. The moho relief is splited in an isostatic part and a displacement part, which depends on the elastic thickness of the lithosphere. The script then computes the principal horizontal strains and their directions associated with the displacement. + A script that demonstrates how to calculate the moho-relief on Venus using global gravity and topography data. The moho relief is splited in an isostatic part and a displacement part, which depends on the elastic thickness of the lithosphere. The script then computes the principal horizontal strains and their directions given the estimated displacement. .. |ImageLink| image:: ../misc/link1.svg :width: 20 diff --git a/docs/index.rst b/docs/index.rst index 2ee1df0..1bb8454 100644 --- a/docs/index.rst +++ b/docs/index.rst @@ -19,9 +19,9 @@ Displacement_strain_planet Displacement_strain_planet provides several functions and example scripts for generating crustal thickness, displacement, gravity, lateral density variations, stress, and strain maps on a planet given a set of input constraints such as from observed gravity and topography data. -These functions solve the `Banerdt (1986) `_ system of equations under different assumptions. The model links 8 parameters: the topography, geoid at the surface, geoid at the moho depth, net acting load on the lithosphere, tangential load potential, flexure of the lithosphere, crustal thickness variations, and internal density variations. Minor corrections have been made in the geoid equations, through 5 equations. All is required is that the user specifies 3 constraints and the model will solve for all other parameters. +These functions solve the `Banerdt (1986) `_ system of equations under different assumptions. The model links 8 parameters: the topography, geoid at the surface, geoid at the moho depth, net acting load on the lithosphere, tangential load potential, flexure of the lithosphere, crustal thickness variations, and internal density variations, through 5 equations. Minor corrections have been made to the geoid equations and displacement equations following `Beuthe (2008) `_. All is required is that the user specifies 3 constraints and the model will solve for all other parameters. -Various improvements have been made to the model including the possibility to account for finite-amplitude correction and filtering `(Wieczorek & Phillips, 1998) `_, lateral density variations at any arbitrary depth and within the surface or moho-relief `(Wieczorek et al., 2013) `_, and density difference between the surface topography and crust `(Broquet & Wieczorek, 2019) `_. +Various improvements have been made to the model, including the possibility to account for finite-amplitude correction and filtering `(Wieczorek & Phillips, 1998) `_, lateral density variations at any arbitrary depth and within the surface or moho-relief `(Wieczorek et al., 2013) `_, and density difference between the surface topography and crust `(Broquet & Wieczorek, 2019) `_. This routine has many applications and is highly versatile, and you can for example: @@ -35,4 +35,4 @@ This routine has many applications and is highly versatile, and you can for exam * Compute Legendre polynomial first and second order derivatives. -In addition to these functions, an example script is provided that will solve for the moho-relief on Mars and estimate the principal strains on the planet as a function of the input elastic thickness. A jupyter notebook is also added with more information on estimating the moho-relief on Mars, assuming Airy or Pratt isostasy, the displacement due to a mantle plume underneath Tharsis or due to internal loading in phase with the surface topography. \ No newline at end of file +In addition to these functions, two example scripts are provided and will solve for the moho-relief on Mars & Venus, and estimate the principal strains on each planets as a function of the input elastic thickness. A jupyter notebook is also added with more information on estimating the moho-relief on Mars, assuming Airy or Pratt isostasy, the displacement due to a mantle plume underneath Tharsis or due to internal loading in phase with the surface topography. \ No newline at end of file diff --git a/docs/references.rst b/docs/references.rst index 3d5681b..9565ddb 100644 --- a/docs/references.rst +++ b/docs/references.rst @@ -7,6 +7,8 @@ doi:\ `10.1029/JB091iB01p00403 `__. +Beuthe, M. (2008). Thin elastic shells with variable thickness for lithospheric flexure of one-plate planets. *Geophysical Journal International*, 172.2, pp. 817–841, doi:\ `10.1111/j.1365-246X.2007.03671.x `__. + Knapmeyer, M. et al. (2006). Working models for spatial distribution and level of Mars’ seismicity. *Journal of Geophysical Research*, 111.E11006, doi:\ `10.1029/2006JE002708 `__.