-
Notifications
You must be signed in to change notification settings - Fork 1
/
.py
110 lines (74 loc) · 3.67 KB
/
.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
# Backend code (simplified)
import pandas as pd
import geopandas as gpd
def process_gtfs_data(start_coordinates, stop_coordinates):
# Read and preprocess GTFS data using pandas and geopandas
gtfs_data = pd.read_csv('gtfs_data.csv')
# Perform calculations, aggregations, or transformations
# Example: Filtering data based on start and stop coordinates
filtered_data = gtfs_data[(gtfs_data['start_coordinates'] == start_coordinates) & (gtfs_data['stop_coordinates'] == stop_coordinates)]
# Perform additional data processing or analysis using pandas and geopandas
# Extract relevant information for frontend
extracted_info = {
'total_trips': len(filtered_data),
'average_duration': filtered_data['duration'].mean(),
# ... other extracted information
}
# Return the extracted information to the frontend
return extracted_info
#
import psycopg2
from psycopg2 import sql
import pandas as pd
# Establish a connection to the PostGIS database
conn = psycopg2.connect(database="your_database", user="your_username", password="your_password", host="your_host", port="your_port")
# Convert pandas DataFrame to a list of tuples
# data = your_dataframe.to_records(index=False).tolist()
# Create a cursor object
cur = conn.cursor()
# Specify the table name and columns in the INSERT INTO statement
table_name = "your_table"
columns = ["column1", "column2", ...] # Specify the column names
# Build the SQL statement
insert_query = sql.SQL("INSERT INTO {} ({}) VALUES %s").format(sql.Identifier(table_name), sql.SQL(', ').join(map(sql.Identifier, columns)))
# Execute the SQL statement with the data as a parameter
cur.execute(insert_query, (tuple(data),))
# Commit the changes
conn.commit()
# Close the cursor and the database connection
cur.close()
conn.close()
"""
In the context of geospatial data, a DataFrame can contain various types of columns,
including geometry columns that store spatial information such as points, lines, polygons,
or other geometric shapes.
"""
import pandas as pd
import geopandas as gpd
# Read a CSV file containing geospatial data using pandas
df = pd.read_csv('geospatial_data.csv')
# Convert the pandas DataFrame to a geopandas GeoDataFrame
gdf = gpd.GeoDataFrame(df, geometry=gpd.points_from_xy(df.longitude, df.latitude))
# Perform geospatial operations on the GeoDataFrame
buffered_gdf = gdf.buffer(100) # Create a buffer of 100 units around the points
# Access the geometry column to retrieve the spatial information
geometry = gdf.geometry
# Access other columns in the DataFrame
other_columns = gdf['column_name']
# Perform spatial queries and analysis
intersecting_features = gdf[gdf.intersects(some_geometry)]
# Export the GeoDataFrame to different formats
gdf.to_file('output.shp') # Export to a Shapefile
gdf.to_file('output.geojson', driver='GeoJSON') # Export to a GeoJSON file
"""
In the example above, the geospatial data is initially read from a CSV file using pandas.
Then, the DataFrame is converted to a GeoDataFrame by specifying the geometry column using
the gpd.GeoDataFrame function. The geometry parameter is set to the spatial information
obtained from the latitude and longitude columns.
Once you have the GeoDataFrame, you can perform various geospatial operations and analyses using
the available methods and functions provided by geopandas. For example, you can create buffers
around the points, perform spatial queries to find intersecting features, access the geometry
column to retrieve spatial information, and access other columns in the DataFrame.
You can also export the GeoDataFrame to different geospatial file formats, such as Shapefile or GeoJSON,
using the to_file method.
"""