-
Notifications
You must be signed in to change notification settings - Fork 1
/
target_pgd.py
41 lines (37 loc) · 1.63 KB
/
target_pgd.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
import math
import paddle
import paddle.nn as nn
class PGDTargetAttack(object):
def __init__(self, model, img, label, eps, alpha, num_iters=6, criterion=None):
self.model = model
if criterion is not None:
self.criterion = criterion
else:
self.criterion = nn.CosineSimilarity()
self.img = img
self.label = label
self.epsilon = eps
self.alpha = alpha
self.num_iters = num_iters
def attack(self):
origin_tensor_img = paddle.to_tensor(self.img)
tensor_img = paddle.to_tensor(self.img)
tensor_label = paddle.to_tensor(self.label)
delta_init = paddle.uniform(self.img.shape, dtype='float32', min=-self.epsilon, max=self.epsilon)
tensor_img = tensor_img + delta_init
clip_delta = paddle.clip(tensor_img - origin_tensor_img, -self.epsilon, self.epsilon)
tensor_img = origin_tensor_img + clip_delta
for step in range(self.num_iters):
tensor_img.stop_gradient = False
predict = self.model(tensor_img)
loss = self.criterion(predict, tensor_label)
for param in self.model.parameters():
param.clear_grad()
loss.backward(retain_graph=True)
grad = paddle.to_tensor(tensor_img.grad)
delta = self.alpha * paddle.sign(grad)
tensor_img = tensor_img + delta
clip_delta = paddle.clip(tensor_img - origin_tensor_img, -self.epsilon, self.epsilon)
tensor_img = origin_tensor_img + clip_delta
tensor_img = paddle.to_tensor(tensor_img.detach().numpy())
return tensor_img