-
Origin Repo:mlpc-ucsd/CoaT
-
Code:coat.py
-
Evaluate Transforms:
# backend: pil # input_size: 224x224 transforms = T.Compose([ T.Resize(248, interpolation='bicubic'), T.CenterCrop(224), T.ToTensor(), T.Normalize(mean=[0.485, 0.456, 0.406], std=[0.229, 0.224, 0.225]) ])
-
Model Details:
Model Model Name Params (M) FLOPs (G) Top-1 (%) Top-5 (%) Pretrained Model CoaT-tiny coat_ti 5.5 4.4 78.45 94.07 Download CoaT-mini coat_m 10.0 6.8 81.09 95.25 Download CoaT-lite-tiny coat_lite_ti 5.7 1.6 77.51 93.92 Download CoaT-lite-mini coat_lite_m 11.0 2.0 79.10 94.61 Download
-
Citation:
@misc{xu2021coscale, title={Co-Scale Conv-Attentional Image Transformers}, author={Weijian Xu and Yifan Xu and Tyler Chang and Zhuowen Tu}, year={2021}, eprint={2104.06399}, archivePrefix={arXiv}, primaryClass={cs.CV} }