Skip to content

Latest commit

 

History

History
44 lines (37 loc) · 2.42 KB

File metadata and controls

44 lines (37 loc) · 2.42 KB

CoaT

  • Paper:Co-Scale Conv-Attentional Image Transformers

  • Origin Repo:mlpc-ucsd/CoaT

  • Code:coat.py

  • Evaluate Transforms:

    # backend: pil
    # input_size: 224x224
    transforms = T.Compose([
        T.Resize(248, interpolation='bicubic'),
        T.CenterCrop(224),
        T.ToTensor(),
        T.Normalize(mean=[0.485, 0.456, 0.406], std=[0.229, 0.224, 0.225])
    ])
  • Model Details:

    Model Model Name Params (M) FLOPs (G) Top-1 (%) Top-5 (%) Pretrained Model
    CoaT-tiny coat_ti 5.5 4.4 78.45 94.07 Download
    CoaT-mini coat_m 10.0 6.8 81.09 95.25 Download
    CoaT-lite-tiny coat_lite_ti 5.7 1.6 77.51 93.92 Download
    CoaT-lite-mini coat_lite_m 11.0 2.0 79.10 94.61 Download
  • Citation:

    @misc{xu2021coscale,
        title={Co-Scale Conv-Attentional Image Transformers}, 
        author={Weijian Xu and Yifan Xu and Tyler Chang and Zhuowen Tu},
        year={2021},
        eprint={2104.06399},
        archivePrefix={arXiv},
        primaryClass={cs.CV}
    }