-
Paper:Deep Layer Aggregation
-
Origin Repo:ucbdrive/dla
-
Code:dla.py
-
Evaluate Transforms:
# backend: pil # input_size: 224x224 transforms = T.Compose([ T.Resize(256, interpolation='bilinear'), T.CenterCrop(224), T.ToTensor(), T.Normalize(mean=[0.485, 0.456, 0.406], std=[0.229, 0.224, 0.225]) ])
-
Model Details:
Model Model Name Params (M) FLOPs (G) Top-1 (%) Top-5 (%) Pretrained Model DLA-34 dla_34 15.8 3.1 76.39 93.15 Download DLA-46-c dla_46_c 1.3 0.5 64.88 86.29 Download DLA-46x-c dla_46x_c 1.1 0.5 65.98 86.98 Download DLA-60 dla_60 22.0 4.2 77.02 93.31 Download DLA-60x dla_60x 17.4 3.5 78.24 94.02 Download DLA-60x-c dla_60x_c 1.3 0.6 67.91 88.43 Download DLA-102 dla_102 33.3 7.2 79.44 94.76 Download DLA-102x dla_102x 26.4 5.9 78.51 94.23 Download DLA-102x2 dla_102x2 41.4 9.3 79.45 94.64 Download DLA-169 dla_169 53.5 11.6 78.71 94.34 Download
-
Citation:
@misc{yu2019deep, title={Deep Layer Aggregation}, author={Fisher Yu and Dequan Wang and Evan Shelhamer and Trevor Darrell}, year={2019}, eprint={1707.06484}, archivePrefix={arXiv}, primaryClass={cs.CV} }