Skip to content

Latest commit

 

History

History
103 lines (75 loc) · 2.65 KB

article.md

File metadata and controls

103 lines (75 loc) · 2.65 KB

Type Inference by Example, Part 3

Diagram
Inferring types for generic calls.

Continuing where we left off in part 2, we’ll now consider calling a generic function:

function map<A, B>(array : Array<A>, body : A => B) : Array<B>

So this is the classic map function that applies a lambda function body to each element of the array and returns a new array with the results. Note that map takes two type parameters, A and B.

Here’s a function that squares each element of an array:

function square(items) {
    return map(items, x => x * x);
}

Now, to add in the missing type annotations, we first must instantiate the type for map — that is, create a new copy of the function signature where every type parameter is replaced with a fresh type variable:

function map<$3, $4>(array : Array<$3>, body : $3 => $4) : Array<$4>

While adding the missing type annotations, we make the generics explicit at the call site of map:

function square(items : $1) : $2 {
    return map<$3, $4>(items, (x : $5) => x * x);
}

The first parameter of our instantiated map has type Array<$3>, so we get the following constraint:

$1 == Array<$3>

Considering the lambda function, and assuming that * : (Int, Int) => Int, we get the duplicate constraint:

$5 == Int
$5 == Int

And from the return type of * we know that the return type of the lambda must be Int, such that the full type of the lambda becomes $5 => Int. It should be the same type as the second parameter to map, so we get the constraint:

($5 => Int) == ($3 => $4)

From the return statement, we know that the return type of square is the same as the return type of map:

$2 == Array<$4>

Now we have all the constraints:

$1 == Array<$3>
$5 == Int
$5 == Int
($5 => Int) == ($3 => $4)
$2 == Array<$4>

Since ($5 => Int) == ($3 => $4) has the same type constructor => on both sides, we can replace it by two simpler constraints $5 == $3 and Int == $4:

$1 == Array<$3>
$5 == Int
$5 == Int
$5 == $3
Int == $4
$2 == Array<$4>

Unification does this simplification internally — we’ll get to the algorithm in a bit — and yields us the following substitution:

$1 := Array<Int>
$2 := Array<Int>
$3 := Int
$4 := Int
$5 := Int

Applying the substitution to our syntax tree, we get:

function square(items : Array<Int>) : Array<Int> {
    return map<Int, Int>(items, (x : Int) => x * x);
}

And we’re done.

It’s about time we look at how this is implemented under the hood. Stay tuned for part 4, where we’ll look at the unification algorithm.