Skip to content

Latest commit

 

History

History
 
 

mobilenet

Folders and files

NameName
Last commit message
Last commit date

parent directory

..
 
 
 
 
 
 

MobileNet

Use cases

MobileNet models perform image classification - they take images as input and classify the major object in the image into a set of pre-defined classes. They are trained on ImageNet dataset which contains images from 1000 classes. MobileNet models are also very efficient in terms of speed and size and hence are ideal for embedded and mobile applications.

Description

MobileNet improves the state-of-the-art performance of mobile models on multiple tasks and benchmarks as well as across a spectrum of different model sizes. MobileNet is based on an inverted residual structure where the shortcut connections are between the thin bottleneck layers. The intermediate expansion layer uses lightweight depthwise convolutions to filter features as a source of non-linearity. Additionally, it removes non-linearities in the narrow layers in order to maintain representational power.

Model

MobileNet reduces the dimensionality of a layer thus reducing the dimensionality of the operating space. The trade off between computation and accuracy is exploited in Mobilenet via a width multiplier parameter approach which allows one to reduce the dimensionality of the activation space until the manifold of interest spans this entire space. The below model is using multiplier value as 1.0.

  • Version 2:
Model Download Download (with sample test data) ONNX version Opset version Top-1 accuracy (%) Top-5 accuracy (%)
MobileNet v2-1.0 13.6 MB 14.1 MB 1.2.1 7 70.94 89.99

Inference

We used MXNet as framework with gluon APIs to perform inference. View the notebook imagenet_inference to understand how to use above models for doing inference. Make sure to specify the appropriate model name in the notebook.

Input

All pre-trained models expect input images normalized in the same way, i.e. mini-batches of 3-channel RGB images of shape (N x 3 x H x W), where N is the batch size, and H and W are expected to be at least 224. The inference was done using jpeg image.

Preprocessing

The images have to be loaded in to a range of [0, 1] and then normalized using mean = [0.485, 0.456, 0.406] and std = [0.229, 0.224, 0.225]. The transformation should preferrably happen at preprocessing. Check imagenet_preprocess.py for code.

Output

The model outputs image scores for each of the 1000 classes of ImageNet.

Postprocessing

The post-processing involves calculating the softmax probablility scores for each class and sorting them to report the most probable classes. Check imagenet_postprocess.py for code.

To do quick inference with the model, check out Model Server.

Dataset

Dataset used for train and validation: ImageNet (ILSVRC2012). Check imagenet_prep for guidelines on preparing the dataset.

Validation accuracy

The accuracies obtained by the model on the validation set are mentioned above. The accuracies have been calculated on center cropped images with a maximum deviation of 1% (top-1 accuracy) from the paper.

Training

We used MXNet as framework with gluon APIs to perform training. View the training notebook to understand details for parameters and network for each of the above variants of MobileNet.

Validation

We used MXNet as framework with gluon APIs to perform validation. Use the notebook imagenet_validation to verify the accuracy of the model on the validation set. Make sure to specify the appropriate model name in the notebook.

References

Contributors

License

Apache 2.0