forked from EleutherAI/gpt-neo
-
Notifications
You must be signed in to change notification settings - Fork 0
/
utils.py
288 lines (238 loc) · 9.81 KB
/
utils.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
import re
from urllib.parse import urlparse
from shutil import rmtree
import logging
import os
from pathlib import Path
import sys
import tensorflow.compat.v1 as tf
import tensorflow.compat.v2 as tf2
import mesh_tensorflow as mtf
def setup_logging(args):
Path("logs").mkdir(exist_ok=True)
tf.logging.set_verbosity(logging.INFO)
tf.get_logger().propagate = False # Remove double log on console
name = os.path.splitext(os.path.basename(args.model))[0]
handlers = [
logging.FileHandler(f"logs/{name}.log"),
logging.StreamHandler(sys.stdout)
]
logger = logging.getLogger("tensorflow")
logger.handlers = handlers
return logger
def get_batch_size(params):
return params[f"{params['mode']}_batch_size"]
def add_mode_to_params(params, mode):
if mode == tf.estimator.ModeKeys.PREDICT:
params["mode"] = "predict"
elif mode == tf.estimator.ModeKeys.EVAL:
params["mode"] = "eval"
elif mode == tf.estimator.ModeKeys.TRAIN:
params["mode"] = "train"
else:
raise ValueError(f"Invalid mode {mode}")
return params
def simd_mesh_setup(params, mesh_shape, layout_rules):
"""Constructs SimdMesh function - instructions on how to evenly split tensors across all TPU cores"""
num_hosts = params["context"].num_hosts
host_placement_fn = params["context"].tpu_host_placement_function
device_list = [host_placement_fn(host_id=i) for i in range(num_hosts)]
tf.logging.info(f"device_list = {device_list}")
# TODO: Better estimation of replica cache size?
replica_cache_size = 300 * 1000000 # 300M per replica
# Worker 0 caches all the TPU binaries
worker0_mem = replica_cache_size * params["context"].num_replicas
devices_memory_usage = [worker0_mem] + [0] * (num_hosts - 1)
var_placer = mtf.utils.BalancedVariablePlacer(device_list, devices_memory_usage)
mesh_devices = [""] * mesh_shape.size
mesh_impl = mtf.simd_mesh_impl.SimdMeshImpl(
mesh_shape, layout_rules, mesh_devices, params["context"].device_assignment)
return var_placer, mesh_impl
def remove_batch_from_layout(layout):
"""
The tf-mesh layout splits across batch size, remove it.
Useful for prediction steps, when you no longer want large batches.
:param layout: string describing tf-mesh layout
:return: layout minus batch dimension
"""
layout = layout.split(',')
ret_layout = ""
for i in layout:
if "batch" in i:
pass
else:
ret_layout += f"{i},"
return ret_layout[:-1]
def yes_or_no(question):
while True:
reply = str(input(question+' (y/n): ')).lower().strip()
if reply[:1] == 'y':
return True
if reply[:1] == 'n':
return False
def remove_gs_or_filepath(path):
parsed_url = urlparse(path)
if parsed_url.scheme == "gs":
os.system(f"gsutil rm -rf {path}")
return
rmtree(path)
def save_config(params_dict, logdir):
print(f"Saving config to {logdir}")
text = "{\n\n"
total_params = len(params_dict)
for count, key in enumerate(params_dict):
config_value = str(params_dict[key])
if re.search('[a-zA-Z]', config_value):
if config_value.lower() != 'true':
if config_value.lower() != 'false':
if config_value[0] != '[':
# TODO: Making a manual exception for parsing epsilon right now since it's the only number in
# scientific notation. Should fix this.
if key != "epsilon":
config_value = f'"{config_value}"'
if count == total_params - 1:
text += f'"{str(key)}"' + ' : ' + config_value + '\n\n'
else:
text += f'"{str(key)}"' + ' : ' + config_value + ',\n\n'
text += '\n\n}'
sess = tf.InteractiveSession()
summary_op = tf.summary.text("run_config", tf.convert_to_tensor(text))
summary_writer = tf.summary.FileWriter(f"{logdir}/config", sess.graph)
text = sess.run(summary_op)
summary_writer.add_summary(text, 0)
summary_writer.flush()
summary_writer.close()
tf.reset_default_graph()
print('Done!')
def expand_attention_types_params(params_list):
newlist = []
for item in params_list:
for _ in range(item[1]):
newlist.extend(item[0])
return newlist
def get_n_trainable_vars(graph):
"""
Gets number of trainable vars in a MTF model.
:param graph: Mesh-Tensorflow graph
:return: None
"""
total_parameters = 0
for variable in graph.trainable_variables:
shape = variable.shape.dims
variable_parameters = 1
for dim in shape:
variable_parameters *= dim.size
total_parameters += variable_parameters
print(f"\n\nN TRAINABLE VARS:\n{total_parameters:,}\n\n")
def print_dim_names(graph):
"""
Print names of all Dimensions
:param graph: Mesh-Tensorflow graph
:return: None
"""
all_dim_names = []
for variable in graph.all_variables:
names = variable.shape.dimension_names
all_dim_names.append(names)
# Print all dim names in graph & write to file
all_dim_names = [item for sublist in all_dim_names for item in sublist] # Flatten all dims
unique_dims = list(set(all_dim_names))
print("ALL DIM NAMES:")
for dim_name in unique_dims:
print(dim_name)
print('\n')
def get_graph_info(graph):
"""
Wrapper fn that calculates number of trainable vars in an MTF graph & prints all dim_names to file
TODO: how to get un-trainable dim-names too, batch etc.
:param graph: Mesh-Tensorflow graph
:return: None
"""
get_n_trainable_vars(graph)
print_dim_names(graph)
def loss_denominator(targets, num_microbatches):
"""Denominator applied to losses.
This is usually the size of the targets tensor (omitting ensemble
dimensions). Alternatively, it is an override value passed to the
class constructor.
Args:
targets: a mtf.Tensor
num_microbatches: an integer - greater than one if the step has been
serialized into multiple microbatches to save memory.
Returns:
a float
"""
ret = float(targets.shape.size) * num_microbatches
return float(ret)
def check_dataset(input_fn):
tf.enable_eager_execution()
dataset = input_fn(params)
dataset_iter = dataset.make_one_shot_iterator()
tensor, _ = next(dataset_iter)
enc = fetch_encoder(params)
for p in tensor[:1]:
txt = enc.decode(p)
#txt = enc.decode(tensor)
max_id = tf.reduce_max(tensor)
min_id = tf.reduce_min(tensor)
print(tensor)
print(tensor.shape)
print('-' * 50)
print(txt[:500], '\n...\n', txt[-500:])
print('-' * 50)
print('min token id: ', min_id)
print('max token id: ', max_id)
exit()
def auto_layout(graph, mesh_shape, logits, loss):
layout_rules = mtf.auto_mtf.layout(graph, mesh_shape, [logits, loss])
print(f"Auto-selected layout:\n{layout_rules}\nRe-initialize graph with selected layout")
quit() # TODO: It should be easy to just reinitialize everything with selected layout
def auto_layout_and_mesh_shape(graph, num_cores, logits, loss):
layout_rules, mesh_shape = mtf.auto_mtf.layout_and_mesh_shape(graph, num_cores,
[logits, loss], max_mesh_shape_dimensions=4)
print(f"Num cores:\n{num_cores}\nAuto-selected layout:\n{layout_rules}\nAuto-selected mesh shape:\n{mesh_shape}" \
f"\nRe-initialize graph with selected layout & mesh shape")
quit() # TODO: It should be easy to just reinitialize everything with selected layout
def create_host_call(model_dir):
"""Construct a host_call writing scalar summaries.
Borrowed from t2t.
Args:
model_dir: String containing path to train
Returns:
(fn, args) Pair to be called by TPUEstimator as the host_call.
"""
graph = tf.get_default_graph()
# A list of (name, lowered tensor) tuples
summaries = graph.get_collection(mtf.utils.SCALAR_SUMMARIES_COLLECTION_KEY)
def maybe_cast(tensor):
assert tensor.shape.is_compatible_with([]), tensor.name
if tensor.dtype == tf.int64:
return tf.to_int32(tensor)
if tensor.dtype == tf.bfloat16:
return tf.cast(tensor, tf.float32)
return tensor
reshaped_tensors = [tf.reshape(maybe_cast(t), [1]) for _, t in summaries]
# When no supported summaries are found, don't create host_call. Otherwise,
# TPU outfeed queue would enqueue global_step while host_call doesn't dequeue
# it, eventually causing hang.
if not reshaped_tensors:
return None
def host_call_fn(global_step, *args):
"""Training host call. Creates scalar summaries for training metrics."""
# This function is executed on the CPU and should not directly reference
# any Tensors in the rest of the `model_fn`. To pass Tensors from the
# model to the `model_fn`, provide as part of the `host_call`.
global_step = tf.cast(global_step[0], tf.int64)
with tf2.summary.create_file_writer(model_dir).as_default():
# We cannot directly use any tensor from summaries, because each
# tensor here must be a concat of multiple tensors from all shards.
# Therefore, we rely on the assumption that args wil have the same
# length as summaries, and all tensors in args will have the same
# order of self._tup_summaries.
assert len(args) == len(summaries)
for i, tensor in enumerate(args):
name = summaries[i][0]
tf2.summary.scalar(name, tf.reduce_mean(tensor), step=global_step)
return tf.summary.all_v2_summary_ops()
global_step_t = tf.reshape(tf.to_int32(tf.train.get_global_step()), [1])
return host_call_fn, [global_step_t] + reshaped_tensors