Python autoinstrumentation library for AWS Bedrock calls made using boto3
.
This package implements OpenInference tracing for invoke_model
and converse
calls made using a boto3
bedrock-runtime
client. These traces are fully OpenTelemetry compatible and can be sent to an OpenTelemetry collector for viewing, such as Arize phoenix
.
Note
The Converse API was introduced in botocore v1.34.116. Please use v1.34.116 or above to utilize converse.
Find the list of Bedrock-supported models and their IDs here. Future testing is planned for additional models.
Model | Supported Methods |
---|---|
Anthropic Claude 2.0 |
converse, invoke |
Anthropic Claude 2.1 |
converse, invoke |
Anthropic Claude 3 Sonnet 1.0 |
converse |
Anthropic Claude 3.5 Sonnet |
converse |
Anthropic Claude 3 Haiku |
converse |
Meta Llama 3 8b Instruct |
converse |
Meta Llama 3 70b Instruct |
converse |
Mistral AI Mistral 7B Instruct |
converse |
Mistral AI Mixtral 8X7B Instruct |
converse |
Mistral AI Mistral Large |
converse |
Mistral AI Mistral Small |
converse |
pip install openinference-instrumentation-bedrock
Important
OpenInference for AWS Bedrock supports both invoke_model
and converse
. For models that use the Messages API, such as Anthropic Claude 3 and Anthropic Claude 3.5, use the Converse API instead.
In a notebook environment (jupyter
, colab
, etc.) install openinference-instrumentation-bedrock
, arize-phoenix
and boto3
.
You can test out this quickstart guide in Google Colab!
pip install openinference-instrumentation-bedrock arize-phoenix boto3
Ensure that boto3
is configured with AWS credentials.
First, import dependencies required to autoinstrument AWS Bedrock and set up phoenix
as an collector for OpenInference traces.
from urllib.parse import urljoin
import boto3
import phoenix as px
from openinference.instrumentation.bedrock import BedrockInstrumentor
from opentelemetry import trace as trace_api
from opentelemetry.exporter.otlp.proto.http.trace_exporter import OTLPSpanExporter
from opentelemetry.sdk import trace as trace_sdk
from opentelemetry.sdk.trace.export import SimpleSpanProcessor
Next, we'll start a phoenix
server and set it as a collector.
px.launch_app()
session_url = px.active_session().url
phoenix_otlp_endpoint = urljoin(session_url, "v1/traces")
phoenix_exporter = OTLPSpanExporter(endpoint=phoenix_otlp_endpoint)
tracer_provider = trace_sdk.TracerProvider()
tracer_provider.add_span_processor(SimpleSpanProcessor(span_exporter=phoenix_exporter))
trace_api.set_tracer_provider(tracer_provider=tracer_provider)
Instrumenting boto3
is simple:
BedrockInstrumentor().instrument()
Now, all calls to invoke_model
are instrumented and can be viewed in the phoenix
UI.
session = boto3.session.Session()
client = session.client("bedrock-runtime")
prompt = b'{"prompt": "Human: Hello there, how are you? Assistant:", "max_tokens_to_sample": 1024}'
response = client.invoke_model(modelId="anthropic.claude-v2", body=prompt)
response_body = json.loads(response.get("body").read())
print(response_body["completion"])
Alternatively, all calls to converse
are instrumented and can be viewed in the phoenix
UI.
session = boto3.session.Session()
client = session.client("bedrock-runtime")
message1 = {
"role": "user",
"content": [{"text": "Create a list of 3 pop songs."}]
}
message2 = {
"role": "user",
"content": [{"text": "Make sure the songs are by artists from the United Kingdom."}]
}
messages = []
messages.append(message1)
response = client.converse(
modelId="anthropic.claude-3-5-sonnet-20240620-v1:0",
messages=messages
)
out = response["output"]["message"]
messages.append(out)
print(out.get("content")[-1].get("text"))
messages.append(message2)
response = client.converse(
modelId="anthropic.claude-v2:1",
messages=messages
)
out = response['output']['message']
print(out.get("content")[-1].get("text"))