Skip to content

Latest commit

 

History

History
186 lines (161 loc) · 4.89 KB

API.md

File metadata and controls

186 lines (161 loc) · 4.89 KB

mistralrs API

These are API docs for the mistralrs package.

Table of contents

  • Full API docs: here
  • Docs for the Which enum: here
  • Example: here

Which

Each *_model_id may be a HF hub repo or a local path. For quantized GGUF models, a list is accepted if multiples files must be specified.

Architecture for plain models

If you do not specify the architecture, an attempt will be made to use the model's config. If this fails, please raise an issue.

  • Mistral
  • Gemma
  • Mixtral
  • Llama
  • Phi2
  • Phi3
  • Qwen2
  • Gemma2
  • Starcoder2
  • Phi3_5MoE

ISQ Organization

Architecture for vision models

  • Phi3V
  • Idefics2
  • LLaVaNext
  • LLaVa
  • VLlama

Architecture for diffusion models

  • Flux
  • FluxOffloaded

ISQ Organization

class Which(Enum):
    @dataclass
    class Plain:
        model_id: str
        arch: Architecture | None = None
        tokenizer_json: str | None = None
        topology: str | None = None
        organization: IsqOrganization | None = None
        write_uqff: str | None = None
        dtype: ModelDType = ModelDType.Auto

    @dataclass
    class XLora:
        xlora_model_id: str
        order: str
        arch: Architecture | None = None
        model_id: str | None = None
        tokenizer_json: str | None = None
        tgt_non_granular_index: int | None = None
        topology: str | None = None
        write_uqff: str | None = None
        dtype: ModelDType = ModelDType.Auto

    @dataclass
    class Lora:
        adapters_model_id: str
        order: str
        arch: Architecture | None = None
        model_id: str | None = None
        tokenizer_json: str | None = None
        topology: str | None = None
        write_uqff: str | None = None
        dtype: ModelDType = ModelDType.Auto

    @dataclass
    class GGUF:
        quantized_model_id: str
        quantized_filename: str | list[str]
        tok_model_id: str | None = None
        topology: str | None = None
        dtype: ModelDType = ModelDType.Auto

    @dataclass
    class XLoraGGUF:
        quantized_model_id: str
        quantized_filename: str | list[str]
        xlora_model_id: str
        order: str
        tok_model_id: str | None = None
        tgt_non_granular_index: int | None = None
        topology: str | None = None
        dtype: ModelDType = ModelDType.Auto

    @dataclass
    class LoraGGUF:
        quantized_model_id: str
        quantized_filename: str | list[str]
        adapters_model_id: str
        order: str
        tok_model_id: str | None = None
        topology: str | None = None
        dtype: ModelDType = ModelDType.Auto

    @dataclass
    class GGML:
        quantized_model_id: str
        quantized_filename: str
        tok_model_id: str | None = None
        tokenizer_json: str | None = None
        gqa: int | None = None
        topology: str | None = None
        dtype: ModelDType = ModelDType.Auto

    @dataclass
    class XLoraGGML:
        quantized_model_id: str
        quantized_filename: str
        xlora_model_id: str
        order: str
        tok_model_id: str | None = None
        tgt_non_granular_index: int | None = None
        tokenizer_json: str | None = None
        gqa: int | None = None
        topology: str | None = None
        dtype: ModelDType = ModelDType.Auto

    @dataclass
    class LoraGGML:
        quantized_model_id: str
        quantized_filename: str
        adapters_model_id: str
        order: str
        tok_model_id: str | None = None
        tokenizer_json: str | None = None
        topology: str | None = None
        dtype: ModelDType = ModelDType.Auto

    @dataclass
    class VisionPlain:
        model_id: str
        arch: VisionArchitecture
        tokenizer_json: str | None = None
        topology: str | None = None
        write_uqff: str | None = None
        dtype: ModelDType = ModelDType.Auto

    @dataclass
    class DiffusionPlain:
        model_id: str
        arch: DiffusionArchitecture
        dtype: ModelDType = ModelDType.Auto

Example

from mistralrs import Runner, Which, ChatCompletionRequest

runner = Runner(
    which=Which.GGUF(
        tok_model_id="mistralai/Mistral-7B-Instruct-v0.1",
        quantized_model_id="TheBloke/Mistral-7B-Instruct-v0.1-GGUF",
        quantized_filename="mistral-7b-instruct-v0.1.Q4_K_M.gguf",
    )
)

res = runner.send_chat_completion_request(
    ChatCompletionRequest(
        model="mistral",
        messages=[{"role":"user", "content":"Tell me a story about the Rust type system."}],
        max_tokens=256,
        presence_penalty=1.0,
        top_p=0.1,
        temperature=0.1,
    )
)
print(res.choices[0].message.content)
print(res.usage)