-
Notifications
You must be signed in to change notification settings - Fork 14
/
samples.py
155 lines (136 loc) · 4.64 KB
/
samples.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
"""
A handy utility for verifying SDXL image generation locally.
To set up, first run a local cog server using:
cog run -p 5000 python -m cog.server.http
Then, in a separate terminal, generate samples
python samples.py
"""
import base64
import os
import sys
import requests
def gen(output_fn, **kwargs):
if os.path.exists(output_fn):
return
print("Generating", output_fn)
url = "http://localhost:5000/predictions"
response = requests.post(url, json={"input": kwargs})
data = response.json()
try:
datauri = data["output"][0]
base64_encoded_data = datauri.split(",")[1]
data = base64.b64decode(base64_encoded_data)
except:
print("Error!")
print("input:", kwargs)
print(data["logs"])
sys.exit(1)
with open(output_fn, "wb") as f:
f.write(data)
def main():
SCHEDULERS = [
"DDIM",
"DPMSolverMultistep",
"HeunDiscrete",
"KarrasDPM",
"K_EULER_ANCESTRAL",
"K_EULER",
"PNDM",
]
gen(
f"sample.txt2img.png",
prompt="A studio portrait photo of a cat",
num_inference_steps=25,
guidance_scale=7,
negative_prompt="ugly, soft, blurry, out of focus, low quality, garish, distorted, disfigured",
seed=1000,
width=1024,
height=1024,
)
for refiner in ["base_image_refiner", "expert_ensemble_refiner", "no_refiner"]:
gen(
f"sample.img2img.{refiner}.png",
prompt="a photo of an astronaut riding a horse on mars",
image="https://huggingface.co/datasets/patrickvonplaten/images/resolve/main/aa_xl/000000009.png",
prompt_strength=0.8,
num_inference_steps=25,
refine=refiner,
guidance_scale=7,
negative_prompt="ugly, soft, blurry, out of focus, low quality, garish, distorted, disfigured",
seed=42,
)
gen(
f"sample.inpaint.{refiner}.png",
prompt="A majestic tiger sitting on a bench",
image="https://raw.githubusercontent.com/CompVis/latent-diffusion/main/data/inpainting_examples/overture-creations-5sI6fQgYIuo.png",
mask="https://raw.githubusercontent.com/CompVis/latent-diffusion/main/data/inpainting_examples/overture-creations-5sI6fQgYIuo_mask.png",
prompt_strength=0.8,
num_inference_steps=25,
refine=refiner,
guidance_scale=7,
negative_prompt="ugly, soft, blurry, out of focus, low quality, garish, distorted, disfigured",
seed=42,
)
for split in range(0, 10):
split = split / 10.0
gen(
f"sample.expert_ensemble_refiner.{split}.txt2img.png",
prompt="A studio portrait photo of a cat",
num_inference_steps=25,
guidance_scale=7,
refine="expert_ensemble_refiner",
high_noise_frac=split,
negative_prompt="ugly, soft, blurry, out of focus, low quality, garish, distorted, disfigured",
seed=1000,
width=1024,
height=1024,
)
gen(
f"sample.refine.txt2img.png",
prompt="A studio portrait photo of a cat",
num_inference_steps=25,
guidance_scale=7,
refine="base_image_refiner",
negative_prompt="ugly, soft, blurry, out of focus, low quality, garish, distorted, disfigured",
seed=1000,
width=1024,
height=1024,
)
gen(
f"sample.refine.10.txt2img.png",
prompt="A studio portrait photo of a cat",
num_inference_steps=25,
guidance_scale=7,
refine="base_image_refiner",
refine_steps=10,
negative_prompt="ugly, soft, blurry, out of focus, low quality, garish, distorted, disfigured",
seed=1000,
width=1024,
height=1024,
)
gen(
"samples.2.txt2img.png",
prompt="A studio portrait photo of a cat",
num_inference_steps=25,
guidance_scale=7,
negative_prompt="ugly, soft, blurry, out of focus, low quality, garish, distorted, disfigured",
scheduler="KarrasDPM",
num_outputs=2,
seed=1000,
width=1024,
height=1024,
)
for s in SCHEDULERS:
gen(
f"sample.{s}.txt2img.png",
prompt="A studio portrait photo of a cat",
num_inference_steps=25,
guidance_scale=7,
negative_prompt="ugly, soft, blurry, out of focus, low quality, garish, distorted, disfigured",
scheduler=s,
seed=1000,
width=1024,
height=1024,
)
if __name__ == "__main__":
main()