-
Notifications
You must be signed in to change notification settings - Fork 125
/
eyeballer.py
executable file
·127 lines (98 loc) · 4.74 KB
/
eyeballer.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
#!/usr/bin/env python3
import click
import csv
from eyeballer.model import EyeballModel, DATA_LABELS
from eyeballer.visualization import HeatMap
from jinja2 import Template
@click.group(invoke_without_command=True)
@click.option('--weights', default=None, type=click.Path(), help="Weights file for input/output")
@click.option('--summary/--no-summary', default=False, help="Print model summary at start")
@click.option('--seed', default=None, type=int, help="RNG seed for data shuffling and transformations, defaults to random value")
@click.pass_context
def cli(ctx, weights, summary, seed):
model_kwargs = {"weights_file": weights,
"print_summary": summary,
"seed": seed}
# pass the model to subcommands
ctx.ensure_object(dict)
# We only pass the kwargs so we can be lazy and make the model later after the subcommand cli is parsed. This
# way, the user doesn't have to wait for tensorflow if they are just calling --help on a subcommand.
ctx.obj['model_kwargs'] = model_kwargs
@cli.command()
@click.option('--graphs/--no-graphs', default=False, help="Save accuracy and loss graphs to file")
@click.option('--epochs', default=20, type=int, help="Number of epochs") # TODO better help string
@click.option('--batchsize', default=32, type=int, help="Batch size") # TODO better help string
@click.pass_context
def train(ctx, graphs, batchsize, epochs):
model = EyeballModel(**ctx.obj['model_kwargs'])
model.train(print_graphs=graphs, batch_size=batchsize, epochs=epochs)
@cli.command()
@click.argument('screenshot')
@click.option('--heatmap', default=False, is_flag=True, help="Create a heatmap graphfor the prediction")
@click.option('--threshold', default=.5, type=float, help="Threshold confidence for labeling")
@click.pass_context
def predict(ctx, screenshot, heatmap, threshold):
model = EyeballModel(**ctx.obj['model_kwargs'])
results = model.predict(screenshot)
if heatmap:
# Generate a heatmap
HeatMap(screenshot, model, threshold).generate()
if not results:
print("Error: Input file does not exist")
if len(results) == 1:
print(results)
else:
with open("results.csv", "w", newline="") as csvfile:
fieldnames = ["filename", "custom404", "login", "webapp", "oldlooking", "parked"]
labelwriter = csv.DictWriter(csvfile, fieldnames=fieldnames)
labelwriter.writeheader()
labelwriter.writerows(results)
print("Output written to results.csv")
buildHTML(processResults(results, threshold))
print("HTML written to results.html")
def processResults(results, threshold):
'''Filter the initial results dictionary and reformat it for use in JS.
Keyword arguments:
results -- dictionary output from predict function
'''
jsResults = {}
for result in results:
positiveTags = []
for label, label_info in result.items():
if (label == 'filename'):
pass
elif label_info > threshold:
positiveTags.append(label)
jsResults[result['filename']] = positiveTags
return(jsResults)
def buildHTML(jsResults):
'''Build HTML around the JS Dictionary that is passed from processResults.
Keyword arguments:
jsResults -- dictionary output from processResults function
'''
html_output = ""
with open("prediction_output_template.html") as template_file:
template = Template(template_file.read())
html_output = template.render(jsResults=jsResults)
with open('results.html', 'w') as file:
file.write(html_output)
def pretty_print_evaluation(results):
"""Print a human-readable summary of the evaluation"""
# We use 4.2% to handle all the way from " 0.00%" (7chars) to "100.00%" (7chars)
for label in DATA_LABELS:
print("{} Precision Score: {:4.2%}".format(label, results[label]['precision']))
print("{} Recall Score: {:4.2%}".format(label, results[label]['recall']))
print("'None of the above' Precision: {:4.2%}".format(results['none_of_the_above_precision']))
print("'None of the above' Recall: {:4.2%}".format(results['none_of_the_above_recall']))
print("All or nothing Accuracy: {:4.2%}".format(results['all_or_nothing_accuracy']))
print("Overall Binary Accuracy: {:4.2%}".format(results['total_binary_accuracy']))
print("Top 10 worst predictions: {}".format(results['top_10_worst'][1]))
@cli.command()
@click.option('--threshold', default=.5, type=float, help="Threshold confidence for labeling")
@click.pass_context
def evaluate(ctx, threshold):
model = EyeballModel(**ctx.obj['model_kwargs'])
results = model.evaluate(threshold)
pretty_print_evaluation(results)
if __name__ == '__main__':
cli()