The Pytorch implementation is facebookresearch/detectron2.
-
Faster R-CNN(C4)
-
Mask R-CNN(C4)
- GTX2080Ti / Ubuntu16.04 / cuda10.2 / cudnn8.0.4 / TensorRT7.2.1 / OpenCV4.2
- GTX2080Ti / win10 / cuda10.2 / cudnn8.0.4 / TensorRT7.2.1 / OpenCV4.2 / VS2017 (need to replace function corresponding to the dirent.h and add "--extended-lambda" in CUDA C/C++ -> Command Line -> Other options)
TensorRT7.2 is recomended because Resize layer in 7.0 with kLINEAR mode is a little different with opencv. You can also implement data preprocess out of tensorrt if you want to use TensorRT7.0 or more previous version.
The result under fp32 is same to pytorch about 4 decimal places!
- generate .wts from pytorch with .pkl or .pth
// git clone -b v0.4 https://github.com/facebookresearch/detectron2.git
// go to facebookresearch/detectron2
python setup.py build develop // more install information see https://github.com/facebookresearch/detectron2/blob/master/INSTALL.md
// download https://dl.fbaipublicfiles.com/detectron2/COCO-Detection/faster_rcnn_R_50_C4_1x/137257644/model_final_721ade.pkl
// download https://raw.githubusercontent.com/freedenS/TestImage/main/demo.jpg
// copy tensorrtx/rcnn/gen_wts.py and demo.jpg into facebookresearch/detectron2
// ensure cfg.MODEL.WEIGHTS in gen_wts.py is correct
// go to facebookresearch/detectron2
python gen_wts.py
// a file 'faster.wts' will be generated.
- build tensorrtx/rcnn and run
// put faster.wts into tensorrtx/rcnn
// go to tensorrtx/rcnn
// update parameters in rcnn.cpp if your model is trained on custom dataset.The parameters are corresponding to config in detectron2.
mkdir build
cd build
cmake ..
make
sudo ./rcnn -s [.wts] [m] // serialize model to plan file, add m for maskrcnn
sudo ./rcnn -d [.engine] [image folder] [m] // deserialize and run inference, the images in [image folder] will be processed. add m for maskrcnn
// For example
sudo ./rcnn -s faster.wts faster.engine
sudo ./rcnn -d faster.engine ../samples
// sudo ./rcnn -s mask.wts mask.engine m
// sudo ./rcnn -d mask.engine ../samples m
- check the images generated, as follows. _demo.jpg and so on.
// python
1.download pretrained model
R18: https://download.pytorch.org/models/resnet18-f37072fd.pth
R34: https://download.pytorch.org/models/resnet34-b627a593.pth
R50: https://download.pytorch.org/models/resnet50-0676ba61.pth
R101: https://download.pytorch.org/models/resnet101-63fe2227.pth
R152: https://download.pytorch.org/models/resnet152-394f9c45.pth
2.convert pth to pkl by facebookresearch/detectron2/tools/convert-torchvision-to-d2.py
3.set merge_from_file in gen_wts.py
./configs/COCO-Detections/faster_rcnn_R_50_C4_1x.yaml for fasterRcnn
./configs/COCO-InstanceSegmentation/mask_rcnn_R_50_C4_1x.yaml for maskRcnn
4.set cfg.MODEL.RESNETS.DEPTH = 18(34,50,101,152),
cfg.MODEL.RESNETS.STRIDE_IN_1X1 = False,
cfg.MODEL.RESNETS.RES2_OUT_CHANNELS = 64, // for R18, R34; 256 for others
cfg.MODEL.PIXEL_MEAN = [123.675, 116.280, 103.530],
cfg.MODEL.PIXEL_STD = [58.395, 57.120, 57.375],
cfg.INPUT.FORMAT = "RGB"
and then train your own model
5.generate your wts file.
// c++
6.set BACKBONE_RESNETTYPE = R18(R34,R50,R101,R152) in rcnn.cpp line 14
7.modify PIXEL_MEAN and PIXEL_STD in rcnn.cpp
8.set STRIDE_IN_1X1=false in backbone.hpp line 9
9.set other parameters if it's not same with default
10.build your engine, refer to how to run
11.convert your image to RGB before inference
1.download pretrained model
R50: https://dl.fbaipublicfiles.com/detectron2/COCO-Detection/faster_rcnn_R_50_C4_1x/137257644/model_final_721ade.pkl for fasterRcnn
https://dl.fbaipublicfiles.com/detectron2/COCO-InstanceSegmentation/mask_rcnn_R_50_C4_1x/137259246/model_final_9243eb.pkl for maskRcnn
R101: https://dl.fbaipublicfiles.com/detectron2/COCO-Detection/faster_rcnn_R_101_C4_3x/138204752/model_final_298dad.pkl for fasterRcnn
https://dl.fbaipublicfiles.com/detectron2/COCO-InstanceSegmentation/mask_rcnn_R_101_C4_3x/138363239/model_final_a2914c.pkl for maskRcnn
2.set merge_from_file in gen_wts.py
R50-faster: ./configs/COCO-Detection/faster_rcnn_R_50_C4_1x.yaml
R101-faster: ./configs/COCO-Detection/faster_rcnn_R_101_C4_3x.yaml
R50-mask: ./configs/COCO-InstanceSegmentation/mask_rcnn_R_50_C4_1x.yaml
R101-mask: ./configs/COCO-InstanceSegmentation/mask_rcnn_R_101_C4_3x.yaml
3.set BACKBONE_RESNETTYPE = R50(R101) rcnn.cpp line 13
4.set STRIDE_IN_1X1=true in backbone.hpp
5.follow how to run
-
if you meet the error below, just try to make again. The flag has been added in CMakeLists.txt
error: __host__ or __device__ annotation on lambda requires --extended-lambda nvcc flag
-
the image preprocess was moved into tensorrt, see DataPreprocess in rcnn.cpp, so the input data is {H, W, C}
-
the predicted boxes is corresponding to new image size, so the final boxes need to multiply with the ratio, see calculateRatio in rcnn.cpp
-
tensorrt use fixed input size, if the size of your data is different from the engine, you need to adjust your data and the result.
-
if you want to use maskrcnn with cuda10.2, please be sure that you have upgraded cuda to the latest patch. see NVIDIA/TensorRT#1151 for detail.
-
you can build fasterRcnn with maskRcnn weights file.
-
do initializing for _pre_nms_topk in RpnNmsPlugin and _count in BatchedNmsPlugin inside class to prevent error assert, because the configurePlugin function is implemented after clone() and before serialize(). one can also set it through constructor.
-
quantizationType:fp32,fp16,int8. see BuildRcnnModel(rcnn.cpp line 276) for detail.
-
the usage of int8 is same with tensorrtx/yolov5, but it has no improvement comparing to fp16.
decode and nms plugins are modified from retinanet-examples
- RpnDecodePlugin: calculate coordinates of proposals which is the first n
parameters:
top_n: num of proposals to select
anchors: coordinates of all anchors
stride: stride of current feature map
image_height: iamge height after DataPreprocess for clipping the box beyond the boundary
image_width: iamge width after DataPreprocess for clipping the box beyond the boundary
Inputs:
scores{C,H,W} C is number of anchors, H and W are the size of feature map
boxes{C,H,W} C is 4*number of anchors, H and W are the size of feature map
Outputs:
scores{C,1} C is equal to top_n
boxes{C,4} C is equal to top_n
- RpnNmsPlugin: apply nms to proposals
parameters:
nms_thresh: thresh of nms
post_nms_topk: number of proposals to select
Inputs:
scores{C,1} C is equal to top_n
boxes{C,4} C is equal to top_n
Outputs:
boxes{C,4} C is equal to post_nms_topk
- RoiAlignPlugin: implement of RoiAlign(align=True). see https://github.com/facebookresearch/detectron2/blob/f50ec07cf220982e2c4861c5a9a17c4864ab5bfd/detectron2/layers/roi_align.py#L7 for detail
parameters:
pooler_resolution: output size
spatial_scale: scale the input boxes by this number
sampling_ratio: number of inputs samples to take for each output
num_proposals: number of proposals
Inputs:
boxes{N,4} N is number of boxes
features{C,H,W} C is channels of feature map, H and W are sizes of feature map
Outputs:
features{N,C,H,W} N is number of boxes, C is channels of feature map, H and W are equal to pooler_resolution
- PredictorDecodePlugin: calculate coordinates of predicted boxes by applying delta to proposals
parameters:
num_boxes: num of proposals
image_height: iamge height after DataPreprocess for clipping the box beyond the boundary
image_width: iamge width after DataPreprocess for clipping the box beyond the boundary
bbox_reg_weights: the weights for dx,dy,dw,dh. see https://github.com/facebookresearch/detectron2/blob/master/detectron2/config/defaults.py#L292 for detail
Inputs:
scores{N,C,1,1} N is euqal to num_boxes, C is the num of classes
boxes{N,C,1,1} N is euqal to num_boxes, C is the num of classes
proposals{N,4} N is equal to num_boxes
Outputs:
scores{N,1} N is equal to num_boxes
boxes{N,4} N is equal to num_boxes
classes{N,1} N is equal to num_boxes
- BatchedNmsPlugin: apply nms to predicted boxes with different classes. same with https://github.com/facebookresearch/detectron2/blob/master/detectron2/layers/nms.py#L19
parameters:
nms_thresh: thresh of nms
detections_per_im: number of detections to return per image
Inputs:
scores{N,1} N is the number of the boxes
boxes{N,4} N is the number of the boxes
classes{N,1} N is the number of the boxes
Outputs:
scores{N,1} N is equal to detections_per_im
boxes{N,4} N is equal to detections_per_im
classes{N,1} N is equal to detections_per_im
- MaskRcnnInferencePlugin: extract the masks for the predicted classes and do sigmoid. same with https://github.com/facebookresearch/detectron2/blob/9c7f8a142216ebc52d3617c11f8fafd75b74e637/detectron2/modeling/roi_heads/mask_head.py#L114
parameters:
detections_per_im: number of detections to return per image
output_size: same with output size of RoiAlign
Inputs:
indices{N,1} N is the number of the predicted boxes
masks{N,C,H,W} N is the number of the predicted boxes
Outputs:
selected_masks{N,1,H,W} N is the number of the predicted boxes, H and W is equal to output_size