11 models for Polish+companies+bankruptcy+data
Table 1 Final Results of all-5-years data for Comparative Models with unbalanced training data
ModelName
Accuracy
ROC_AUC
PR_AUC
F1_score
Time_Used
BernoulliNB
0.897
0.627
0.046
0.542
0.011
GaussianNB
0.863
0.66
0.049
0.531
0.012
SVM
0.976
0.5
0.024
0.494
1.470
DecisionTree
0.965
0.657
0.114
0.647
0.750
SGD
0.876
0.642
0.046
0.533
0.042
Nearest_Neighbors
0.723
0.675
0.042
0.467
0.007
AdaBoost
0.978
0.582
0.131
0.628
7.771
GradientBoosting
0.978
0.588
0.145
0.636
6.518
HistGradientBoosting
0.982
0.64
0.262
0.708
9.174
MLP
0.977
0.623
0.158
0.667
113.919
Table 1year.arff with unbalanced training data
ModelName
Accuracy
Recall
ROC_AUC
PR_AUC
F1_score
Time_Used
BernoulliNB
0.954
0.010
0.505
0.050
0.499
0.005
GaussianNB
0.739
0.594
0.670
0.078
0.508
0.005
SVM
0.954
0.000
0.500
0.046
0.488
0.400
DecisionTree
0.959
0.531
0.755
0.313
0.759
0.245
SGD
0.955
0.010
0.505
0.055
0.499
0.027
NearestCentroid
0.685
0.656
0.671
0.075
0.483
0.004
AdaBoost
0.962
0.271
0.633
0.229
0.687
2.649
GradientBoosting
0.968
0.385
0.691
0.345
0.754
2.078
HistGradientBoosting
0.974
0.490
0.744
0.466
0.811
120.715
MLP
0.953
0.312
0.648
0.178
0.675
42.656
LogisticRegression(Ours)
0.710
0.143
0.430
0.011
0.421
1.581
Table 2year.arff with unbalanced training data
ModelName
Accuracy
Recall
ROC_AUC
PR_AUC
F1_score
Time_Used
BernoulliNB
0.961
0.000
0.499
0.038
0.490
0.007
GaussianNB
0.827
0.243
0.547
0.043
0.500
0.007
SVM
0.962
0.000
0.500
0.038
0.490
1.047
DecisionTree
0.954
0.409
0.692
0.182
0.688
0.367
SGD
0.962
0.000
0.500
0.038
0.490
0.040
NearestCentroid
0.644
0.626
0.635
0.054
0.447
0.006
AdaBoost
0.963
0.070
0.534
0.078
0.553
3.831
GradientBoosting
0.961
0.096
0.545
0.075
0.568
3.053
HistGradientBoosting
0.978
0.435
0.717
0.431
0.792
49.879
MLP
0.950
0.261
0.619
0.109
0.629
59.709
LogisticRegression(Ours)
0.787
0.231
0.514
0.018
0.458
1.690
Table 3year.arff with unbalanced training data
ModelName
Accuracy
Recall
ROC_AUC
PR_AUC
F1_score
Time_Used
BernoulliNB
0.957
0.000
0.500
0.043
0.489
0.007
GaussianNB
0.831
0.336
0.594
0.059
0.525
0.015
SVM
0.957
0.000
0.500
0.043
0.489
1.276
DecisionTree
0.930
0.299
0.628
0.101
0.614
0.438
SGD
0.957
0.000
0.500
0.043
0.489
0.046
NearestCentroid
0.697
0.522
0.614
0.058
0.472
0.005
AdaBoost
0.956
0.112
0.552
0.084
0.577
4.065
GradientBoosting
0.959
0.134
0.565
0.117
0.599
3.281
HistGradientBoosting
0.968
0.313
0.655
0.292
0.720
101.454
MLP
0.948
0.224
0.602
0.108
0.620
60.222
LogisticRegression(Ours)
0.872
0.182
0.536
0.028
0.499
1.868
Table 4year.arff with unbalanced training data
ModelName
Accuracy
Recall
ROC_AUC
PR_AUC
F1_score
Time_Used
BernoulliNB
0.948
0.007
0.503
0.058
0.493
0.007
GaussianNB
0.864
0.464
0.675
0.112
0.593
0.013
SVM
0.948
0.000
0.500
0.052
0.487
0.956
DecisionTree
0.948
0.516
0.744
0.283
0.740
0.451
SGD
0.948
0.007
0.503
0.055
0.493
0.039
NearestCentroid
0.718
0.654
0.688
0.093
0.512
0.005
AdaBoost
0.960
0.307
0.652
0.285
0.712
3.762
GradientBoosting
0.948
0.000
0.500
0.052
0.487
2.987
HistGradientBoosting
0.969
0.444
0.721
0.437
0.792
96.038
MLP
0.946
0.340
0.660
0.195
0.684
56.011
LogisticRegression(Ours)
0.924
0.179
0.564
0.046
0.547
1.787
Table 5year.arff with unbalanced training data
ModelName
Accuracy
Recall
ROC_AUC
PR_AUC
F1_score
Time_Used
BernoulliNB
0.932
0.033
0.516
0.085
0.514
0.004
GaussianNB
0.884
0.554
0.731
0.200
0.665
0.004
SVM
0.941
0.157
0.578
0.193
0.617
0.347
DecisionTree
0.937
0.595
0.779
0.347
0.765
0.183
SGD
0.935
0.050
0.525
0.114
0.530
0.024
NearestCentroid
0.775
0.736
0.757
0.162
0.587
0.007
AdaBoost
0.946
0.430
0.707
0.322
0.746
2.211
GradientBoosting
0.951
0.455
0.721
0.371
0.768
1.697
HistGradientBoosting
0.962
0.537
0.765
0.485
0.818
110.560
MLP
0.933
0.537
0.750
0.307
0.744
36.765
LogisticRegression(Ours)
0.925
0.421
0.682
0.109
0.621
1.026
Table 1year.arff with balanced training data via SMOTE
ModelName
Precision
Recall
ROC_AUC
PR_AUC
F1_score
Time_Used
BernoulliNB
0.833
0.292
0.575
0.058
0.522
0.008
GaussianNB
0.506
0.771
0.632
0.063
0.390
0.013
SVM
0.812
0.635
0.728
0.108
0.564
5.137
DecisionTree
0.923
0.500
0.722
0.171
0.666
0.525
SGD
0.903
0.438
0.681
0.121
0.620
0.073
NearestCentroid
0.685
0.635
0.661
0.073
0.481
0.005
AdaBoost
0.903
0.542
0.731
0.154
0.643
5.270
GradientBoosting
0.905
0.542
0.732
0.156
0.646
4.317
HistGradientBoosting
0.974
0.510
0.753
0.461
0.813
25.384
MLP
0.900
0.562
0.740
0.157
0.643
80.322
LogisticRegression(Ours)
0.668
0.286
0.479
0.012
0.410
20.871
Table 2year.arff with balanced training data via SMOTE
ModelName
Precision
Recall
ROC_AUC
PR_AUC
F1_score
Time_Used
BernoulliNB
0.780
0.365
0.581
0.048
0.493
0.009
GaussianNB
0.595
0.626
0.610
0.050
0.421
0.019
SVM
0.758
0.609
0.686
0.070
0.509
11.095
DecisionTree
0.910
0.435
0.682
0.105
0.609
0.694
SGD
0.796
0.487
0.647
0.063
0.518
0.118
NearestCentroid
0.640
0.617
0.629
0.053
0.444
0.007
AdaBoost
0.862
0.470
0.673
0.081
0.564
7.616
GradientBoosting
0.865
0.496
0.687
0.088
0.571
6.333
HistGradientBoosting
0.973
0.400
0.698
0.334
0.757
31.196
MLP
0.885
0.522
0.710
0.106
0.596
104.437
LogisticRegression(Ours)
0.643
0.692
0.667
0.029
0.422
19.106
Table 3year.arff with balanced training data via SMOTE
ModelName
Precision
Recall
ROC_AUC
PR_AUC
F1_score
Time_Used
BernoulliNB
0.777
0.388
0.591
0.056
0.500
0.011
GaussianNB
0.688
0.590
0.641
0.064
0.474
0.023
SVM
0.778
0.567
0.677
0.079
0.525
11.070
DecisionTree
0.892
0.403
0.659
0.095
0.592
0.804
SGD
0.890
0.455
0.682
0.106
0.600
0.113
NearestCentroid
0.694
0.522
0.612
0.058
0.471
0.004
AdaBoost
0.849
0.470
0.668
0.086
0.563
8.036
GradientBoosting
0.859
0.440
0.659
0.084
0.566
6.780
HistGradientBoosting
0.963
0.410
0.699
0.268
0.733
24.232
MLP
0.879
0.388
0.644
0.084
0.574
106.323
LogisticRegression(Ours)
0.650
0.682
0.666
0.040
0.436
19.910
Table 4year.arff with balanced training data via SMOTE
ModelName
Precision
Recall
ROC_AUC
PR_AUC
F1_score
Time_Used
BernoulliNB
0.795
0.477
0.645
0.086
0.539
0.010
GaussianNB
0.802
0.588
0.701
0.108
0.561
0.022
SVM
0.801
0.641
0.725
0.119
0.568
9.120
DecisionTree
0.889
0.484
0.698
0.139
0.626
0.726
SGD
0.761
0.758
0.760
0.125
0.553
0.101
NearestCentroid
0.719
0.654
0.688
0.093
0.512
0.006
AdaBoost
0.849
0.608
0.735
0.139
0.606
7.405
GradientBoosting
0.862
0.647
0.761
0.161
0.626
6.209
HistGradientBoosting
0.965
0.569
0.778
0.421
0.805
30.426
MLP
0.878
0.523
0.710
0.139
0.621
102.660
LogisticRegression(Ours)
0.754
0.643
0.700
0.064
0.501
22.184
Table 5year.arff with balanced training data via SMOTE
ModelName
Precision
Recall
ROC_AUC
PR_AUC
F1_score
Time_Used
BernoulliNB
0.799
0.620
0.716
0.147
0.590
0.013
GaussianNB
0.873
0.678
0.782
0.229
0.674
0.007
SVM
0.867
0.711
0.795
0.233
0.674
2.447
DecisionTree
0.896
0.554
0.738
0.219
0.682
0.426
SGD
0.892
0.694
0.800
0.265
0.703
0.053
NearestCentroid
0.773
0.736
0.755
0.160
0.585
0.002
AdaBoost
0.905
0.702
0.811
0.294
0.724
4.232
GradientBoosting
0.901
0.678
0.797
0.276
0.714
3.388
HistGradientBoosting
0.953
0.636
0.806
0.444
0.811
25.816
MLP
0.911
0.587
0.761
0.261
0.712
61.952
LogisticRegression(Ours)
0.813
0.789
0.802
0.112
0.561
16.805