forked from PrincetonUniversity/BrainPipe
-
Notifications
You must be signed in to change notification settings - Fork 1
/
cell_detect.py
executable file
·179 lines (144 loc) · 5.99 KB
/
cell_detect.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
#!/usr/bin/env python2
# -*- coding: utf-8 -*-
"""
Created on Mon Nov 19 15:42:12 2018
@author: wanglab
"""
import os
import sys
import shutil
import argparse
from tools.utils.io import load_kwargs
from tools.conv_net.utils.functions.preprocess import get_dims_from_folder, make_indices, make_memmap_from_tiff_list, generate_patch, reconstruct_memmap_array_from_tif_dir
from tools.conv_net.utils.functions.cell_stats import calculate_cell_measures, consolidate_cell_measures
from tools.conv_net.utils.functions.check import check_patchlist_length_equals_patches
import pandas as pd
import numpy as np
def main(**args):
# args should be the info you need to specify the params
# for a given experiment, but only params should be used below
params = fill_params(**args)
if params["stepid"] == 0:
# PRE-PROCESSING FOR CNN INPUT --> MAKING INPUT ARRAY
# make directory to store patches
if not os.path.exists(params["data_dir"]):
os.mkdir(params["data_dir"])
# save params to .csv file
save_params(params, params["data_dir"])
# convert full size data folder into memmap array
make_memmap_from_tiff_list(params["cellch_dir"],
params["data_dir"],
params["cores"],
params["dtype"],
params["verbose"])
elif params["stepid"] == 1:
# PRE-PROCESSING FOR CNN INPUT --> PATCHING
# generate memmap array of patches
patch_dst = generate_patch(**params)
sys.stdout.write("\nmade patches in {}\n".format(patch_dst))
sys.stdout.flush()
elif params["stepid"] == 11:
# CHECK TO SEE WHETHER PATCHING WAS SUCCESSFUL
# run checker
check_patchlist_length_equals_patches(**params)
sys.stdout.write("\nready for inference!")
sys.stdout.flush()
elif params["stepid"] == 21:
# POST CNN --> INITIALISING RECONSTRUCTED ARRAY FOR ARRAY JOB
sys.stdout.write("\ninitialising reconstructed array...\n")
sys.stdout.flush()
np.lib.format.open_memmap(params["reconstr_arr"], mode="w+",
shape=params["inputshape"],
dtype=params["dtype"])
sys.stdout.write("done :]\n")
sys.stdout.flush()
elif params["stepid"] == 2:
# POST CNN --> RECONSTRUCTION AFTER RUNNING INFERENCE ON TIGER2
# reconstruct
sys.stdout.write("\nstarting reconstruction...\n")
sys.stdout.flush()
reconstruct_memmap_array_from_tif_dir(**params)
if params["cleanup"]:
shutil.rmtree(params["cnn_dir"])
elif params["stepid"] == 3:
# POST CNN --> FINDING CELL CENTERS
save_params(params, params["data_dir"])
# find cell centers, measure sphericity, perimeter, and z span of cell
csv_dst = calculate_cell_measures(**params)
sys.stdout.write(
"\ncell coordinates and measures saved in {}\n".format(csv_dst))
sys.stdout.flush()
elif params["stepid"] == 4:
# POST CNN --> CONSOLIDATE CELL CENTERS FROM ARRAY JOB
# part 1 - check to make sure all jobs that needed to run
# have completed; part 2 - make pooled results
consolidate_cell_measures(**params)
def fill_params(expt_name, stepid, jobid):
params = {}
# slurm params
params["stepid"] = stepid
params["jobid"] = jobid
# experiment params
# going one folder up to get to fullsizedata
params["expt_name"] = os.path.basename(
os.path.abspath(os.path.dirname(expt_name)))
# find cell channel tiff directory from parameter dict
kwargs = load_kwargs(os.path.dirname(expt_name))
vol = [vol for vol in kwargs["volumes"]]
src = vol.full_sizedatafld_vol
assert os.path.isdir(src), "nonexistent data directory"
print("\n\n data directory: {}".format(src))
params["cellch_dir"] = src
params["scratch_dir"] = "/jukebox/scratch/ejdennis"
params["data_dir"] = os.path.join(
params["scratch_dir"], params["expt_name"])
# changed paths after cnn run
params["cnn_data_dir"] = os.path.join(
params["scratch_dir"], params["expt_name"])
params["cnn_dir"] = os.path.join(
params["cnn_data_dir"], "output_chnks") # set cnn patch directory
params["reconstr_arr"] = os.path.join(
params["cnn_data_dir"], "reconstructed_array.npy")
params["output_dir"] = expt_name
# pre-processing params
params["dtype"] = "float32"
params["cores"] = 8
params["verbose"] = True
params["cleanup"] = False
# cnn window size for lightsheet =
# typically 20, 192, 192 for 4x, 20, 32, 32 for 1.3x
params["patchsz"] = (60, 3840, 3328)
params["stridesz"] = (40, 3648, 3136)
params["window"] = (20, 192, 192)
params["inputshape"] = get_dims_from_folder(src)
params["patchlist"] = make_indices(
params["inputshape"], params["stridesz"])
# post-processing params
params["threshold"] = (0.5, 1) # h129 = 0.6; prv = 0.85
params["zsplt"] = 30
params["ovlp_plns"] = 30
return params
def save_params(params, dst):
"""
save params in cnn specific parameter dictionary
for reconstruction/postprocessing
can discard later if need be
"""
(pd.DataFrame.from_dict(
data=params, orient="index").to_csv(
os.path.join(dst, "cnn_param_dict.csv"),
header=False))
sys.stdout.write(
"\nparameters saved in: {}".format(os.path.join(
dst, "cnn_param_dict.csv")))
sys.stdout.flush()
if __name__ == "__main__":
parser = argparse.ArgumentParser(description=__doc__)
parser.add_argument("stepid", type=int,
help="Step ID")
parser.add_argument("jobid",
help="Job ID to run as an array job")
parser.add_argument("expt_name",
help="Tracing output directory/registration output")
args = parser.parse_args()
main(**vars(args))