diff --git a/fluids/geometry.py b/fluids/geometry.py index d062646..8cd0c5e 100644 --- a/fluids/geometry.py +++ b/fluids/geometry.py @@ -196,6 +196,10 @@ def SA_partial_sphere(D, h): .. [1] Weisstein, Eric W. "Spherical Cap." Text. Accessed December 22, 2015. http://mathworld.wolfram.com/SphericalCap.html. ''' + if h > D: + h = D + elif h < 0.0: + h = 0.0 r = D*0.5 a = sqrt(h*(2.*r - h)) return pi*(a*a + h*h) @@ -237,35 +241,11 @@ def V_partial_sphere(D, h): ''' if h <= 0.0: return 0.0 + if h > D: + h = D r = 0.5*D a = sqrt(h*(2.*r - h)) - return 1/6.*pi*h*(3.*a*a + h*h) - - - -#def V_horizontal_bullet(D, L, H, b=None): -# # As in GPSA -# if not b: -# b = 0.25*D # elliptical 2:1 heads -# Ze = H/D -# Zc = H/D -# K1 = 2*b/D -# alpha = 2*atan(H/sqrt(2*H*D/2 - H**2)) -# fZc = (alpha - sin(alpha)*cos(alpha))/pi -# fZe = -H**2/D**2*(-3 + 2*H/D) -# V = 1/6.*pi*K1*D**3*fZe + 1/4.*pi*D**2*L*fZc -# return V - -#print(V_horizontal_bullet(1., 5., .4999999999999, 0.000000000000000001)) - -#def V_vertical_bullet(D, L, H, b=None): -# K1 = 2*b/D -# Ze = (H1 + H2)/K1*D # is divided by D? -# fZe = -((H1 + H2)) -# -# V = 1/6.*pi*K1*D**3*fZe + 1/4.*pi*D**2*L*fZc -# return V - + return (1/6.)*pi*h*(3.*a*a + h*h) ### Functions as developed by Dan Jones @@ -323,11 +303,11 @@ def V_horiz_conical(D, L, a, h, headonly=False): ''' if h <= 0.0: return 0.0 + elif h > D: + h = D R = 0.5*D - R_third = R/3.0 + R_third = R*(1.0/3.0) t0 = (R-h)/R - if t0 < -1.0 or t0 > 1.0: - raise ValueError("Unphysical height") Af = R*R*acos(t0) - (R-h)*sqrt(h*(R + R - h)) M = abs(t0) if h == R: @@ -387,6 +367,8 @@ def V_horiz_ellipsoidal(D, L, a, h, headonly=False): ''' if h <= 0.0: return 0.0 + elif h > D: + h = D R = 0.5*D Af = R*R*acos((R-h)/R) - (R-h)*sqrt(2*R*h - h*h) Vf = pi*a*h*h*(1 - h/(3.*R)) @@ -439,10 +421,12 @@ def V_horiz_guppy(D, L, a, h, headonly=False): ''' if h <= 0.0: return 0.0 + elif h > D: + h = D R = 0.5*D x0 = sqrt(2.*R*h - h*h) Af = R*R*acos((R-h)/R) - (R-h)*x0 - Vf = 2.*a*R*R/3.*acos(1. - h/R) + 2.*a/9./R*x0*(2.0*h - 3.0*R)*(h + R) + Vf = (2./3.0)*a*R*R*acos(1. - h/R) + (2./9.)*a/R*x0*(2.0*h - 3.0*R)*(h + R) if headonly: Vf = Vf*0.5 else: @@ -518,7 +502,7 @@ def V_horiz_spherical(D, L, a, h, headonly=False): Matching example from [1]_, with inputs in inches and volume in gallons. >>> V_horiz_spherical(D=108., L=156., a=42., h=36)/231. - 2303.9615116986183 + 2303.96151169861 References ---------- @@ -527,36 +511,39 @@ def V_horiz_spherical(D, L, a, h, headonly=False): ''' if h <= 0.0: return 0.0 - R = D/2. - r = (a*a + R*R)/2./abs(a) + elif h > D: + h = D + R = 0.5*D + r = 0.5*(a*a + R*R)/abs(a) w = R - h - y = sqrt(2*R*h - h**2) + y = sqrt(2.0*R*h - h*h) if isclose(r, R, rel_tol=2e-15): # Handle the case of small issues in calculation of `r` blowing up the calculation z = 0.0 else: - z = sqrt(r**2 - R**2) - Af = R**2*acos((R-h)/R) - (R-h)*sqrt(2*R*h - h**2) + z = sqrt(r*r - R*R) + Af = R*R*acos((R-h)/R) - (R-h)*sqrt(2.0*R*h - h*h) if h == R and abs(a) <= R: - Vf = pi*a/6*(3*R**2 + a**2) + Vf = (pi/6.0)*a*(3.0*R*R + a*a) elif h == D and abs(a) <= R: - Vf = pi*a/3*(3*R**2 + a**2) + Vf = (pi/3.0)*a*(3.0*R*R + a*a) elif h == 0 or a in (0.0, R, -R) or z == 0.0: - Vf = pi*a*h**2*(1 - h/3./R) + Vf = pi*a*h*h*(1.0 - h/R*(1.0/3.0)) elif abs(a) >= 0.01*D: + R_r = R/r Vf = a/abs(a)*( - 2*r**3/3.*(acos((R**2 - r*w)/(R*(w-r))) + acos((R**2+r*w)/(R*(w+r))) - - z/r*(2+(R/r)**2)*acos(w/R)) - - 2*(w*r**2 - w**3/3)*atan(y/z) + 4*w*y*z/3) + (2.0/3.0)*r*r*r*(acos((R*R - r*w)/(R*(w-r))) + acos((R*R+r*w)/(R*(w+r))) + - z/r*(2.0+R_r*R_r)*acos(w/R)) + - 2.0*(w*r*r - w*w*w*(1.0/3.0))*atan(y/z) + (4.0/3.0)*w*y*z) else: r2 = r*r R2 = R*R den_inv = 1.0/(r2 - R2) integrated = quad(_V_horiz_spherical_toint, w, R, args=(r2, R2, den_inv))[0] # , epsrel=1.49e-13, - Vf = a/abs(a)*(2*integrated - Af*z) + Vf = a/abs(a)*(2.0*integrated - Af*z) if headonly: - Vf = Vf/2. + Vf = 0.5*Vf else: Vf += Af*L return Vf @@ -678,10 +665,10 @@ def V_horiz_torispherical(D, L, f, k, h, headonly=False): # print((D, L, f, k, h, headonly)) if h <= 0.0: return 0.0 + if h > D or isclose(h, D, rel_tol=2e-15): + h = D if f is None or k is None: raise ValueError("Missing f or k") - if isclose(h, D, rel_tol=2e-15): - h = D R = 0.5*D R2 = R*R @@ -728,10 +715,10 @@ def V_horiz_torispherical(D, L, f, k, h, headonly=False): else: V1weird = 0.0 V2max = quad(V_horiz_torispherical_toint_2, 0.0, upper_3, (wmax2, c10, c11, g, g2))[0] - V3max = pi*a1/6.*(3.0*g*g + a1*a1) + V3max = (pi/6.0)*a1*(3.0*g*g + a1*a1) Vf = 2.0*(2.0*V1max - V1weird + V2max + V3max) if headonly: - Vf = Vf/2. + Vf = 0.5*Vf else: Vf += Af*L return Vf @@ -777,10 +764,12 @@ def V_vertical_conical(D, a, h): ''' if h <= 0.0: return 0.0 + # vertical tanks can have `h` arbitrarily high unlike horizontal tanks if h < a: - Vf = pi/4*(D*h/a)**2*(h/3.) + ratio = D*h/a + Vf = 0.25*pi*ratio*ratio*(1.0/3.0)*h else: - Vf = pi*D**2/4*(h - 2*a/3.) + Vf = 0.25*pi*D*D*(h - a*(2.0/3.)) return Vf @@ -823,9 +812,10 @@ def V_vertical_ellipsoidal(D, a, h): if h <= 0.0: return 0.0 if h < a: - Vf = pi/4*(D*h/a)**2*(a - h/3.) + ratio = D*h/a + Vf = 0.25*pi*ratio*ratio*(a - h*(1.0/3.)) else: - Vf = pi*D**2/4*(h - a/3.) + Vf = 0.25*pi*D*D*(h - a*(1.0/3.)) return Vf @@ -868,9 +858,9 @@ def V_vertical_spherical(D, a, h): if h <= 0.0: return 0.0 if h < a: - Vf = pi*h**2/4*(2*a + D**2/2/a - 4*h/3) + Vf = 0.25*pi*h*h*(2.0*a + 0.5*D*D/a - (4/3.0)*h) else: - Vf = pi/4*(2*a**3/3 - a*D**2/2 + h*D**2) + Vf = 0.25*pi*((2.0/3.0)*a*a*a - 0.5*a*D*D+ h*D*D) return Vf @@ -973,12 +963,13 @@ def V_vertical_torispherical(D, f, k, h): x2 = (0.5*D - k*D) u2 = u*u Vf = (0.25*pi*a1*((2.0/3.0)*a1*a1 + 0.5*D1*D1) + pi*u*(x2*x2 + s) - + pi*u2*(0.5*t - u/3.) + pi*D*(1.0 - 2.0*k)*(0.25*(2.0*u - t)*sqrt(s + t*u + + pi*u2*(0.5*t - u*(1.0/3.)) + pi*D*(1.0 - 2.0*k)*(0.25*(2.0*u - t)*sqrt(s + t*u - u2) + 0.25*t*sqrt(s) + 0.5*k*k*D*D*(acos((t - 2.0*u)/(2.0*k*D)) - alpha))) else: - Vf = pi/4*(2*a1**3/3. + a1*D1**2/2.) + pi*t/2.*((D/2 - k*D)**2 - + s) + pi*t**3/12. + pi*D*(1 - 2*k)*(t*sqrt(s)/4 - + k**2*D**2/2*asin(cos(alpha))) + pi*D**2/4*(h - (a1 + a2)) + ratio = (0.5*D - k*D) + Vf = 0.25*pi*((2.0/3.0)*a1*a1*a1 + 0.5*a1*D1*D1) + 0.5*pi*t*(ratio*ratio + + s) + pi*t*t*t*(1.0/12.) + pi*D*(1.0 - 2.0*k)*(0.25*t*sqrt(s) + + k*k*D*D*(1.0/2.0)*asin(cos(alpha))) + 0.25*pi*D*D*(h - (a1 + a2)) return Vf @@ -1014,7 +1005,7 @@ def V_vertical_conical_concave(D, a, h): Matching example from [1]_, with inputs in inches and volume in gallons. >>> V_vertical_conical_concave(D=113., a=-33, h=15)/231 - 251.15825565795188 + 251.158255657951 References ---------- @@ -1025,9 +1016,10 @@ def V_vertical_conical_concave(D, a, h): if h <= 0.0: return 0.0 if h < abs(a): - Vf = pi*D**2/12.*(3*h + a - (a+h)**3/a**2) + a_plus_h = a + h + Vf = pi*D*D*(1.0/12.)*(3.0*h + a - a_plus_h*a_plus_h*a_plus_h/(a*a)) else: - Vf = pi*D**2/12.*(3*h + a) + Vf = pi*D*D*(1.0/12.)*(3.0*h + a) return Vf @@ -1072,9 +1064,10 @@ def V_vertical_ellipsoidal_concave(D, a, h): if h <= 0.0: return 0.0 if h < abs(a): - Vf = pi*D**2/12.*(3*h + 2*a - (a+h)**2*(2*a-h)/a**2) + a_plus_h = a + h + Vf = pi*D*D*(1.0/12.)*(3.0*h + 2.0*a - a_plus_h*a_plus_h*(2.0*a-h)/(a*a)) else: - Vf = pi*D**2/12.*(3*h + 2*a) + Vf = pi*D*D*(1.0/12.)*(3.0*h + 2.0*a) return Vf @@ -1119,10 +1112,13 @@ def V_vertical_spherical_concave(D, a, h): ''' if h <= 0.0: return 0.0 + D2 = D*D + a2 = a*a if h < abs(a): - Vf = pi/12*(3*D**2*h + a/2.*(3*D**2 + 4*a**2) + (a+h)**3*(4 - (3*D**2+12*a**2)/(2.*a*(a+h)))) + a_plus_h = a + h + Vf = pi*(1.0/12)*(3.0*D2*h + a*(1.0/2.)*(3.0*D2 + 4.0*a2) + a_plus_h*a_plus_h*a_plus_h*(4.0 - (3.0*D2+12.0*a2)/(2.*a*a_plus_h))) else: - Vf = pi/12*(3*D**2*h + a/2.*(3*D**2 + 4*a**2)) + Vf = pi*(1.0/12)*(3.0*D2*h + a*(1.0/2.)*(3.0*D2 + 4.0*a2)) return Vf @@ -1205,28 +1201,32 @@ def V_vertical_torispherical_concave(D, f, k, h): ''' if h <= 0.0: return 0.0 - alpha = asin((1-2*k)/(2.*(f-k))) - a1 = f*D*(1-cos(alpha)) - a2 = k*D*cos(alpha) - D1 = 2*f*D*sin(alpha) - s = (k*D*sin(alpha))**2 - t = 2*a2 + alpha = asin((1.0-2.0*k)/(2.*(f-k))) + cos_alpha = cos(alpha) + sin_alpha = sin(alpha) + a1 = f*D*(1-cos_alpha) + a2 = k*D*cos_alpha + D1 = 2.0*f*D*sin_alpha + s = (k*D*sin_alpha) + s *= s + t = 2.0*a2 def V1(h): - u = h-f*D*(1-cos(alpha)) - v1 = pi/4*(2*a1**3/3. + a1*D1**2/2.) + pi*u*((D/2.-k*D)**2 +s) - v1 += pi*t*u**2/2. - pi*u**3/3. - v1 += pi*D*(1-2*k)*((2*u-t)/4.*sqrt(s+t*u-u**2) + t*sqrt(s)/4. - + k**2*D**2/2.*(acos((t-2*u)/(2*k*D)) -alpha)) + u = h-f*D*(1.0-cos_alpha) + ratio = (0.5*D-k*D) + v1 = 0.25*pi*((2.0/3.0)*a1*a1*a1 + 0.5*a1*D1*D1) + pi*u*(ratio*ratio +s) + v1 += u*u*(0.5*pi*t - pi*(1.0/3.)*u) + v1 += pi*D*(1.0-2.0*k)*((2.0*u-t)*0.25*sqrt(s+t*u-u*u) + 0.25*t*sqrt(s) + + k*k*D*D*0.5*(acos((t-2.0*u)/(2.0*k*D)) -alpha)) return v1 def V2(h): - v2 = pi*h**2/4.*(2*a1 + D1**2/(2.*a1) - 4*h/3.) + v2 = 0.25*pi*h*h*(2.0*a1 + D1*D1/(2.*a1) - 4/3.0*h) return v2 if 0 <= h < a2: - Vf = pi*D**2*h/4 - V1(a1+a2) + V1(a1+a2-h) + Vf = 0.25*pi*D*D*h - V1(a1+a2) + V1(a1+a2-h) elif a2 <= h < a1 + a2: - Vf = pi*D**2*h/4 - V1(a1+a2) + V2(a1+a2-h) + Vf = 0.25*pi*D*D*h - V1(a1+a2) + V2(a1+a2-h) else: - Vf = pi*D**2*h/4 - V1(a1+a2) + Vf = 0.25*pi*D*D*h - V1(a1+a2) return Vf @@ -1286,9 +1286,7 @@ def SA_ellipsoidal_head(D, a): e1 = sqrt(1.0 - R*R/(a*a)) if e1 != 1.0: -# try: log_term = log1p(e1) - log1p(-e1) -# except ZeroDivisionError: else: # Limit as a goes to zero relative to D; may only be ~6 orders of # magnitude smaller than D and will still occur @@ -1485,13 +1483,13 @@ def SA_tank(D, L, sideA=None, sideB=None, sideA_a=0, 18.84955592153876 >>> SA_tank(D=1., L=0, sideA='ellipsoidal', sideA_a=2, sideB='ellipsoidal', ... sideB_a=2)[0] - 10.124375616183062 + 10.124375616183 >>> SA_tank(D=1., L=5, sideA='conical', sideA_a=2, sideB='conical', ... sideB_a=2)[0] - 22.18452243965656 + 22.18452243965 >>> SA_tank(D=1., L=5, sideA='spherical', sideA_a=0.5, sideB='spherical', ... sideB_a=0.5)[0] - 18.84955592153876 + 18.8495559215 ''' # Side A if sideA == 'conical': @@ -1509,7 +1507,7 @@ def SA_tank(D, L, sideA=None, sideB=None, sideA_a=0, raise ValueError("Missing torispherical `k` parameter for sideA") sideA_SA = SA_torispheroidal(D=D, f=sideA_f, k=sideA_k) else: - sideA_SA = pi/4*D**2 # Circle + sideA_SA = 0.25*pi*D*D # Circle # Side B if sideB == 'conical': sideB_SA = SA_conical_head(D=D, a=sideB_a) @@ -1526,7 +1524,7 @@ def SA_tank(D, L, sideA=None, sideB=None, sideA_a=0, raise ValueError("Missing torispherical `k` parameter for sideB") sideB_SA = SA_torispheroidal(D=D, f=sideB_f, k=sideB_k) else: - sideB_SA = pi/4*D**2 # Circle + sideB_SA = 0.25*pi*D*D # Circle lateral_SA = pi*D*L @@ -1655,7 +1653,7 @@ def V_tank(D, L, horizontal=True, sideA=None, sideB=None, sideA_a=0.0, sideA_V = V_vertical_torispherical(D, sideA_f, sideA_k, h=sideA_a) # Cylindrical section - lateral_V = pi/4*D**2*L # All middle + lateral_V = 0.25*pi*D*D*L # All middle if sideB == 'conical': sideB_V = V_vertical_conical(D, sideB_a, h=sideB_a) @@ -1870,11 +1868,10 @@ def _SA_partial_horiz_spherical_head_to_int(x, R2, a4, c1, c2): if to_pow < 0.0: to_pow = 0.0 num = c1*sqrt(to_pow) - try: - return asin(num) - except: - # Tried to asin a number just slightly higher than 1 + if num > 1.0: + # Sometimes, the numerical error will result in trying to asin a number just slightly higher than 1 unless we catch it return 0.5*pi + return asin(num) def SA_partial_horiz_spherical_head(D, a, h): r'''Calculates the partial area of a spherical tank head in the context of @@ -1947,11 +1944,11 @@ def _SA_partial_horiz_ellipsoidal_head_to_int_dbl(x, y, c1, R2, R4, h): x2 = x*x num = c1*(x2 + y2) - R4 den = x2 + (y2 - R2) # Brackets help numerical truncation; zero div without it - try: - return sqrt(num/den) - except: + to_sqrt = num/den + if to_sqrt < 0.0: # Equation is undefined for y == R when x is zero; avoid it return _SA_partial_horiz_ellipsoidal_head_to_int_dbl(x, y*(1.0 - 1e-12), c1, R2, R4, h) + return sqrt(to_sqrt) def _SA_partial_horiz_ellipsoidal_head_limits(x, c1, R2, R4, h): return [0.0, sqrt(R2 - x*x)] @@ -2185,6 +2182,7 @@ def SA_partial_horiz_guppy_head(D, a, h): def _SA_partial_horiz_torispherical_head_int_1(x, b, c): x = float(x) # double check python float here to avoid numpy not erroring on sqrt + # May be best to always use complex numbers here x0 = x*x x1 = b - x0 x2 = sqrt(x1) @@ -2205,6 +2203,7 @@ def _SA_partial_horiz_torispherical_head_int_1(x, b, c): return abs(ans.real) def _SA_partial_horiz_torispherical_head_int_2(y, t2, s, c1): + # May be best to always use complex numbers here # from mpmath import mp, mpf, atanh as catanh # mp.dps=30 # y, t2, s, c1 = mpf(y), mpf(t2), mpf(s), mpf(c1) @@ -2394,7 +2393,7 @@ def G_lim(x): # numba: delete int_1_term1 = high - _SA_partial_horiz_torispherical_head_int_1(R-h, b, c) SA += 2.0*f*D*int_1_term1 else: - SA = 2.0*pi*f*D*a1 + 2*pi*k*D*(a2 + (R - k*D)*asin(a2/(k*D))) + SA = 2.0*pi*f*D*a1 + 2.0*pi*k*D*(a2 + (R - k*D)*asin(a2/(k*D))) SA -= SA_partial_horiz_torispherical_head(D, f, k, h=D-h) return SA @@ -2443,6 +2442,8 @@ def SA_partial_vertical_conical_head(D, a, h): return 0.25*pi*D*D elif h <= 0.0: return 0.0 + elif h > a: + h = a R = 0.5*D SA = pi*R*h*h*sqrt(a*a + R*R)/(a*a) return SA @@ -2506,6 +2507,8 @@ def SA_partial_vertical_ellipsoidal_head(D, a, h): return 0.25*pi*D*D elif h <= 0.0: return 0.0 + elif h > a: + h = a # h should be less than a R = 0.5*D SA = pi*R*R @@ -2570,6 +2573,8 @@ def SA_partial_vertical_spherical_head(D, a, h): return 0.25*pi*D*D elif h <= 0.0: return 0.0 + elif h > a: + h = a R = 0.5*D SA = pi*h*((a*a + R*R)/a) return SA @@ -2647,12 +2652,17 @@ def SA_partial_vertical_torispherical_head(D, f, k, h): a1 = f*D*(1.0 - cos_alpha) a2 = k*D*cos_alpha a = a1 + a2 + if h > a: + h = a if h < a1: SA = 2.0*pi*f*D*h elif a1 <= h <= a: SA = 2.0*pi*f*D*a1 kD_inv = 1.0/(k*D) SA += 2.0*pi*k*D*(h - a1 + (R - k*D)*(asin(a2*kD_inv) - asin((a-h)*kD_inv))) + else: + # This case should not occur due to the earlier checks + return 0.0 return SA @@ -2701,9 +2711,10 @@ def a_torispherical(D, f, k): .. [1] Jones, D. "Calculating Tank Volume." Text. Accessed December 22, 2015. http://www.webcalc.com.br/blog/Tank_Volume.PDF ''' - alpha = asin((1-2*k)/(2*(f-k))) - a1 = f*D*(1 - cos(alpha)) - a2 = k*D*cos(alpha) + alpha = asin((1.0-2.0*k)/(2.0*(f-k))) + cos_alpha = cos(alpha) + a1 = f*D*(1 - cos_alpha) + a2 = k*D*cos_alpha return a1 + a2 @@ -2837,9 +2848,9 @@ def V_from_h(h, D, L, horizontal=True, sideA=None, sideB=None, sideA_a=0, V += V_vertical_torispherical(D, sideA_f, sideA_k, h=min(sideA_a, h)) # Cylindrical section if h >= sideA_a + L: - V += pi/4*D**2*L # All middle + V += 0.25*pi*D*D*L # All middle elif h > sideA_a: - V += pi/4*D**2*(h - sideA_a) # Partial middle + V += 0.25*pi*D*D*(h - sideA_a) # Partial middle # Top head if h > sideA_a + L: h2 = sideB_a - (h - sideA_a - L) @@ -3091,7 +3102,7 @@ class TANK: Dimensionless dish-radius parameter for side A; also commonly given as the product of `f` and `D` (`fD`), which is called dish radius and has units of length, [-] - sideA_k : float, optional + sideA_k : float, optional Dimensionless knuckle-radius parameter for side A; also commonly given as the product of `k` and `D` (`kD`), which is called the knuckle radius and has units of length, [-] diff --git a/tests/test_geometry.py b/tests/test_geometry.py index 13958d7..dc4fe1e 100644 --- a/tests/test_geometry.py +++ b/tests/test_geometry.py @@ -88,10 +88,31 @@ def test_SA_partial_sphere(): SA2 = SA_partial_sphere(2, 1) # One spherical head's surface area: assert_close(SA2, 6.283185307179586) + # Edge cases + assert_close(SA_partial_sphere(1., 0), + SA_partial_sphere(1., -1e-12)) + assert_close(SA_partial_sphere(1., 0), + SA_partial_sphere(1., -1e100)) + + assert_close(SA_partial_sphere(1., 1), + SA_partial_sphere(1., 1+1e-12)) + assert_close(SA_partial_sphere(1., 1), + SA_partial_sphere(1., 1e100)) + def test_V_partial_sphere(): V1 = V_partial_sphere(1., 0.7) assert_close(V1, 0.4105014400690663) assert 0.0 == V_partial_sphere(1., 0.0) + assert 0.0 == V_partial_sphere(1., -1e-10) + assert 0.0 == V_partial_sphere(1., -1e-300) + assert 0.0 == V_partial_sphere(1., -1e300) + + assert_close(V_partial_sphere(1., 1), + V_partial_sphere(1., 1+1e-12)) + + assert_close(V_partial_sphere(1., 1), + V_partial_sphere(1., 1+1e12)) + def test_V_horiz_conical(): # Two examples from [1]_, and at midway, full, and empty. @@ -99,10 +120,6 @@ def test_V_horiz_conical(): Vs_horiz_conical1s = [2041.1923581273443, 6180.540773905826, 3648.490668241736, 7296.981336483472, 0.0] assert_close1d(Vs_horiz_conical1, Vs_horiz_conical1s) - with pytest.raises(Exception): - V_horiz_conical(D=108., L=156., a=42., h=109) - - # Head only custom example: V_head1 = V_horiz_conical(D=108., L=156., a=42., h=84., headonly=True)/231. V_head2 = V_horiz_conical(108., 156., 42., 84., headonly=True)/231. @@ -110,7 +127,17 @@ def test_V_horiz_conical(): assert V_horiz_conical(D=108., L=156., a=42., h=0, headonly=True) == 0.0 -def test_V_horiz_ellipsoidal(): + # Check that if `h` is larger than `D`, it is truncated. This is helpful for floating point error cases. + assert_close(V_horiz_conical(D=108., L=156., a=42., h=108), + V_horiz_conical(D=108., L=156., a=42., h=109)) + + assert_close(V_horiz_conical(D=108., L=156., a=42., h=108), + V_horiz_conical(D=108., L=156., a=42., h=2000)) + + # Check the function handles floating point errors for a slightly negative value of `h` + assert_close(V_horiz_conical(D=108., L=156., a=42., h=0), V_horiz_conical(D=108., L=156., a=42., h=-1e-30)) + assert_close(V_horiz_conical(D=108., L=156., a=42., h=0), V_horiz_conical(D=108., L=156., a=42., h=-1e30)) + # Two examples from [1]_, and at midway, full, and empty. Vs_horiz_ellipsoidal = [V_horiz_ellipsoidal(D=108., L=156., a=42., h=i)/231. for i in (36, 84, 54, 108, 0)] Vs_horiz_ellipsoidals = [2380.9565415578145, 7103.445235921378, 4203.695769930696, 8407.391539861392, 0.0] @@ -122,6 +149,13 @@ def test_V_horiz_ellipsoidal(): assert_close1d([V_head1, V_head2], [970.2761310723387]*2) assert 0.0 == V_horiz_ellipsoidal(108., 156., 42., 0., headonly=True) + + assert_close(V_horiz_ellipsoidal(D=108., L=156., a=42., h=108), + V_horiz_ellipsoidal(D=108., L=156., a=42., h=108+1e-10)) + + assert_close(V_horiz_ellipsoidal(D=108., L=156., a=42., h=108), + V_horiz_ellipsoidal(D=108., L=156., a=42., h=108+1e10)) + def test_V_horiz_guppy(): # Two examples from [1]_, and at midway, full, and empty. @@ -135,6 +169,12 @@ def test_V_horiz_guppy(): assert_close1d([V_head1, V_head2], [63.266257496613804]*2) assert 0.0 == V_horiz_guppy(108., 156., 42., 0.0, headonly=True) + assert_close(V_horiz_guppy(D=108., L=156., a=42., h=108, headonly=True), + V_horiz_guppy(D=108., L=156., a=42., h=108+1e-10, headonly=True)) + + assert_close(V_horiz_guppy(D=108., L=156., a=42., h=108, headonly=True), + V_horiz_guppy(D=108., L=156., a=42., h=108+1e10, headonly=True)) + def test_V_horiz_spherical(): # Two examples from [1]_, and at midway, full, and empty. V_calc = [V_horiz_spherical(D=108., L=156., a=42., h=i)/231. for i in (36, 84, 54, 108, 0)] @@ -169,6 +209,12 @@ def test_V_horiz_spherical(): # case that wasn't working V = V_horiz_spherical(0.8855699976977874, 2.6567099930933624, 0.4427849988488937, 0.8855699976977874, True) + # Case with h over D + assert_close(V_horiz_spherical(D=108., L=156., a=42., h=108., headonly=True), + V_horiz_spherical(D=108., L=156., a=42., h=108.+1e-8, headonly=True)) + assert_close(V_horiz_spherical(D=108., L=156., a=42., h=108., headonly=True), + V_horiz_spherical(D=108., L=156., a=42., h=108.+1e8, headonly=True)) + def test_V_horiz_torispherical(): # Two examples from [1]_, and at midway, full, empty, and 1 inch; covering @@ -190,12 +236,25 @@ def test_V_horiz_torispherical(): # Another case that wasn't working V = V_horiz_torispherical(3.411696249215663, 10.235088747646989, 1.0, 0.06, 3.4116962492156633, True) + + assert_close(V_horiz_torispherical(108., 156., 1., 0.06, 108, headonly=True), + V_horiz_torispherical(108., 156., 1., 0.06, 108+1e-5, headonly=True)) + assert_close(V_horiz_torispherical(108., 156., 1., 0.06, 108, headonly=True), + V_horiz_torispherical(108., 156., 1., 0.06, 108+1e5, headonly=True)) + + # cases that weren't tested + assert_close(V_horiz_torispherical(2, 0, 0.8, 0.154, 1.9623962396239625), 2.0899393249597247, rtol=1e-9) + assert_close(V_horiz_torispherical(2, 0, 0.9, 0.17, 1.8301830183018302), 2.0778125327193195, rtol=1e-9) + assert_close(V_horiz_torispherical(1.018018018018018, 0, 0.8, 0.1, 1), 0.2316373202419867, rtol=1e-9) + def test_V_vertical_conical(): # Two examples from [1]_, and at empty and h=D. Vs_calc = [V_vertical_conical(132., 33., i)/231. for i in [24, 60, 0, 132]] Vs = [250.67461381371024, 2251.175535772343, 0.0, 6516.560761446257] assert_close1d(Vs_calc, Vs) assert 0.0 == V_vertical_conical(132., 33., 0.0) + assert 0.0 == V_vertical_conical(132., 33., -1) + def test_V_vertical_ellipsoidal(): @@ -640,6 +699,12 @@ def test_SA_partial_vertical_conical_head(): SA = SA_partial_vertical_conical_head(D=72., a=48.0, h=24.0) assert_close(SA, 1696.4600329384882) + assert_close(SA_partial_vertical_conical_head(D=72., a=48.0, h=48.0), + SA_partial_vertical_conical_head(D=72., a=48.0, h=48.0*(1+1e-12))) + assert_close(SA_partial_vertical_conical_head(D=72., a=48.0, h=48.0), + SA_partial_vertical_conical_head(D=72., a=48.0, h=48.0+1e12)) + + # Integration tests T1 = TANK(L=120*inch, D=72*inch, horizontal=False, sideA='conical', sideA_a=36*inch, sideB='same') assert_close(T1.SA_from_h(36*inch)/foot**2, 39.98595) @@ -668,6 +733,11 @@ def test_SA_partial_vertical_spherical_head(): SA = SA_partial_vertical_spherical_head(72, a=24, h=12) assert_close(SA, 2940.5307237600464) + assert_close(SA_partial_vertical_spherical_head(D=72., a=48.0, h=48.0), + SA_partial_vertical_spherical_head(D=72., a=48.0, h=48.0*(1+1e-12))) + assert_close(SA_partial_vertical_spherical_head(D=72., a=48.0, h=48.0), + SA_partial_vertical_spherical_head(D=72., a=48.0, h=48.0+1e12)) + # Make sure we cover zeros, avoid the zero division assert_close(SA_partial_vertical_spherical_head(D=1, a=0.0, h=1e-100), 0.7853981633974483, rtol=1e-12) @@ -697,6 +767,11 @@ def test_SA_partial_vertical_torispherical_head(): assert_close(SA_partial_vertical_torispherical_head(D=1.8288, f=1, k=.06, h=0.2127198169675985*(1-1e-12)), SA_partial_vertical_torispherical_head(D=1.8288, f=1, k=.06, h=0.2127198169675985*(1+1e-12)), rtol=1e-9) + assert_close(SA_partial_vertical_torispherical_head(D=1.8288, f=1, k=.06, h=0.3096846279495426*(1-1e-12)), + SA_partial_vertical_torispherical_head(D=1.8288, f=1, k=.06, h=0.3096846279495426*(1+1e12)), rtol=1e-9) + assert_close(SA_partial_vertical_torispherical_head(D=1.8288, f=1, k=.06, h=0.3096846279495426*(1-1e-12)), + SA_partial_vertical_torispherical_head(D=1.8288, f=1, k=.06, h=0.3096846279495426*(1)), rtol=1e-9) + assert_close(SA_partial_vertical_torispherical_head(D=1.8288, f=1, k=.06, h=.2), 2.2981378579540053, rtol=1e-12) assert_close(SA_partial_vertical_torispherical_head(D=1.8288, f=1, k=.06, h=.3), 3.056637737809865, rtol=1e-12) @@ -729,6 +804,11 @@ def test_SA_partial_vertical_ellipsoidal_head(): SA = SA_partial_vertical_ellipsoidal_head(D=72., a=48.0, h=24.0) assert_close(SA, 4675.237891376319, rtol=1e-12) + assert_close(SA_partial_vertical_ellipsoidal_head(D=72., a=48.0, h=48.0), + SA_partial_vertical_ellipsoidal_head(D=72., a=48.0, h=48.0*(1+1e-12))) + assert_close(SA_partial_vertical_ellipsoidal_head(D=72., a=48.0, h=48.0), + SA_partial_vertical_ellipsoidal_head(D=72., a=48.0, h=48.0+1e12)) + # Integration tests T1 = TANK(L=120*inch, D=72*inch, horizontal=False, sideA='ellipsoidal', sideA_a=24*inch, sideB='same') assert_close(T1.SA_from_h(12*inch)/foot**2, 24.71061) @@ -1339,7 +1419,8 @@ def test_circle_segment_h_from_A(): # Point at low area assert_close(circle_segment_h_from_A(D=20, A=.006), 0.010042502885593678, rtol=1e-10) - assert_close(circle_segment_h_from_A(D=20, A=1e-20), 4.443057211031748e-08, rtol=1e-10) + # Note that as A becomes too low, the result becomes highly sensitive to the trig routine. A=1e-7 for D = 20 was too low. + # Special cases assert circle_segment_h_from_A(0.0, 4.5) == 0.0