Skip to content

Latest commit

 

History

History
107 lines (78 loc) · 10.1 KB

README.md

File metadata and controls

107 lines (78 loc) · 10.1 KB

Federated Learning over Wireless Networks: Convergence Analysis and Resource Allocation (Accepted by IEEE/ACM Transactions on Networking (TON))

This repository is for the Experiment Section of the paper: "Federated Learning over Wireless Networks: Convergence Analysis and Resource Allocation"

Authors: Canh T. Dinh, Nguyen H. Tran, Minh N. H. Nguyen, Choong Seon Hong, Wei Bao, Albert Zomaya, Vincent Gramoli

Paper Link: https://arxiv.org/abs/1910.13067

This version is developed based on the code from: https://github.com/litian96/FedProx

We develop the new version using Pytorch at: https://github.com/CharlieDinh/FEDL_pytorch

Software requirements:

  • numpy, scipy, tensorflow, Pillow, matplotlib.

  • To download the dependencies: pip3 install -r requirements.txt

  • The code can be run on any pc.

Dataset: We use 3 datasets: MNIST, FEMNIST, and Synthetic

  • To generate non-idd MNIST Data: In folder data/mnist, run: "python3 generate_niid_mnist_100users.py"
  • To generate FEMNIST Data: first In folder data/nist run preprocess.sh to obtain all raw data, or can be download in the link below, then run python3 generate_niid_femnist_100users.py
  • To generate niid Linear Synthetic: In folder data/linear_synthetic, run: "python3 generate_linear_regession.py"
  • The datasets are available to download at: https://drive.google.com/drive/folders/1Q91NCGcpHQjB3bXJTvtx5qZ-TrIZ9WzT?usp=sharing

Produce figures in the paper:

  • There is a main file "main.py" which allows running all experiments and 3 files "main_mnist.py, main_nist.py, main_linear.py" to produce the figures corresponding for 3 datasets. It is noted that each experiment is run at least 10 times and then the result is averaged.

  • To produce the experiments for Linear Regresstion:

  • In folder data/linear_synthetic, before generating linear data set, configure the value of $\rho$ for example rho = 1.4 (in the papers we use 3 different values of $\rho$: 1.4, 2, 5) then run: "python3 generate_linear_regession_update.py" to generate data corresponding to different values of $\rho$.

  • To find the optimal solution: In folder data/linear_synthetic, run python3 optimal_solution_finding_update.py (also the value of $\rho$ need to be configured to find the optimal solution)

  • To generate result for the training process, run below commands:

    
    python3 -u main.py --dataset linear_synthetic --optimizer fedfedl --model linear.py --num_rounds  200 --clients_per_round 100 --batch_size 0 --num_epochs  20 --learning_rate  0.04 --hyper_learning_rate  0.01 --rho 1.4 --times  1
    python3 -u main.py --dataset linear_synthetic --optimizer fedfedl --model linear.py --num_rounds  200 --clients_per_round 100 --batch_size 0 --num_epochs  20 --learning_rate  0.04 --hyper_learning_rate  0.03 --rho 1.4 --times  1
    python3 -u main.py --dataset linear_synthetic --optimizer fedfedl --model linear.py --num_rounds  200 --clients_per_round 100 --batch_size 0 --num_epochs  20 --learning_rate  0.04 --hyper_learning_rate  0.05 --rho 1.4 --times  1
    python3 -u main.py --dataset linear_synthetic --optimizer fedfedl --model linear.py --num_rounds  200 --clients_per_round 100 --batch_size 0 --num_epochs  20 --learning_rate  0.04 --hyper_learning_rate  0.07 --rho 1.4 --times  1 
    
    python3 -u main.py --dataset linear_synthetic --optimizer fedfedl --model linear.py --num_rounds  200 --clients_per_round 100 --batch_size 0 --num_epochs  20 --learning_rate  0.04 --hyper_learning_rate  0.01 --rho 2 --times  1
    python3 -u main.py --dataset linear_synthetic --optimizer fedfedl --model linear.py --num_rounds  200 --clients_per_round 100 --batch_size 0 --num_epochs  20 --learning_rate  0.04 --hyper_learning_rate  0.03 --rho 2 --times  1 
    python3 -u main.py --dataset linear_synthetic --optimizer fedfedl --model linear.py --num_rounds  200 --clients_per_round 100 --batch_size 0 --num_epochs  20 --learning_rate  0.04 --hyper_learning_rate  0.05 --rho 2 --times  1
    python3 -u main.py --dataset linear_synthetic --optimizer fedfedl --model linear.py --num_rounds  200 --clients_per_round 100 --batch_size 0 --num_epochs  20 --learning_rate  0.04 --hyper_learning_rate  0.07 --rho 2 --times  1 
    
    python3 -u main.py --dataset linear_synthetic --optimizer fedfedl --model linear.py --num_rounds  200 --clients_per_round 100 --batch_size 0 --num_epochs  20 --learning_rate  0.04 --hyper_learning_rate  0.01 --rho 5 --times  1
    python3 -u main.py --dataset linear_synthetic --optimizer fedfedl --model linear.py --num_rounds  200 --clients_per_round 100 --batch_size 0 --num_epochs  20 --learning_rate  0.04 --hyper_learning_rate  0.03 --rho 5 --times  1 
    python3 -u main.py --dataset linear_synthetic --optimizer fedfedl --model linear.py --num_rounds  200 --clients_per_round 100 --batch_size 0 --num_epochs  20 --learning_rate  0.04 --hyper_learning_rate  0.05 --rho 5 --times  1
    python3 -u main.py --dataset linear_synthetic --optimizer fedfedl --model linear.py --num_rounds  200 --clients_per_round 100 --batch_size 0 --num_epochs  20 --learning_rate  0.04 --hyper_learning_rate  0.07 --rho 5 --times  1 
    
  • All the train loss, testing accuracy, and training accuracy will be stored as h5py file in the folder "results".

  • To produce the figure for linear regression run

     python3 main_linear.py

  • Note that all users are selected in Synthetic data, so the experiments for each case of synthetic only need to be run once

  • For MNIST, run below commands:

    
      python3 -u main.py --dataset mnist --optimizer fedfedl --model mclr.py --num_rounds  800 --clients_per_round 10 --batch_size 20 --num_epochs  20 --learning_rate  0.003 --hyper_learning_rate  0.2 --rho 0 --times  10
      python3 -u main.py --dataset mnist --optimizer fedsgd --model mclr.py --num_rounds  800 --clients_per_round 10 --batch_size 20 --num_epochs  20 --learning_rate  0.003 --hyper_learning_rate  0 --rho 0 --times  10 
    
      python3 -u main.py --dataset mnist --optimizer fedfedl --model mclr.py --num_rounds  800 --clients_per_round 10 --batch_size 40 --num_epochs  20 --learning_rate  0.003 --hyper_learning_rate  0.2 --rho 0 --times  10
      python3 -u main.py --dataset mnist --optimizer fedsgd --model mclr.py --num_rounds  800 --clients_per_round 10 --batch_size 40 --num_epochs  20 --learning_rate  0.003 --hyper_learning_rate  0 --rho 0 --times  10 
    
      python3 -u main.py --dataset mnist --optimizer fedfedl --model mclr.py --num_rounds  800 --clients_per_round 10 --batch_size 0 --num_epochs  20 --learning_rate  0.003 --hyper_learning_rate  0.2 --rho 0 --times  10
      python3 -u main.py --dataset mnist --optimizer fedsgd --model mclr.py --num_rounds  800 --clients_per_round 10 --batch_size 0 --num_epochs  20 --learning_rate  0.003 --hyper_learning_rate  0 --rho 0 --times  10 
    
      python3 -u main.py --dataset mnist --optimizer fedfedl --model mclr.py --num_rounds  800 --clients_per_round 10 --batch_size 0 --num_epochs  20 --learning_rate  0.003 --hyper_learning_rate  2 --rho 0 --times  10
      python3 -u main.py --dataset mnist --optimizer fedfedl --model mclr.py --num_rounds  800 --clients_per_round 10 --batch_size 0 --num_epochs  20 --learning_rate  0.003 --hyper_learning_rate  4 --rho 0 --times  10
      

  • To produce the figure for MNIST experiment, run

     python3 main_mn.py

  • For FEMNIST, run below commands:

    
      python3 -u main.py --dataset nist --optimizer fedfedl --model mclr.py --num_rounds  800 --clients_per_round 10 --batch_size 20 --num_epochs  10 --learning_rate  0.003 --hyper_learning_rate  0.2 --rho 0 --times  10 
      python3 -u main.py --dataset nist --optimizer fedsgd --model mclr.py --num_rounds  800 --clients_per_round 10 --batch_size 20 --num_epochs  10 --learning_rate  0.003 --hyper_learning_rate  0 --rho 0 --times  10 
      python3 -u main.py --dataset nist --optimizer fedfedl --model mclr.py --num_rounds  800 --clients_per_round 10 --batch_size 0 --num_epochs  10 --learning_rate  0.015 --hyper_learning_rate  0.5 --rho 0 --times  10 
    
      python3 -u main.py --dataset nist --optimizer fedfedl --model mclr.py --num_rounds  800 --clients_per_round 10 --batch_size 20 --num_epochs  20 --learning_rate  0.003 --hyper_learning_rate  0.2 --rho 0 --times  10 
      python3 -u main.py --dataset nist --optimizer fedsgd --model mclr.py --num_rounds  800 --clients_per_round 10 --batch_size 20 --num_epochs  20 --learning_rate  0.003 --hyper_learning_rate  0 --rho 0 --times  10 
      python3 -u main.py --dataset nist --optimizer fedfedl --model mclr.py --num_rounds  800 --clients_per_round 10 --batch_size 0 --num_epochs  20 --learning_rate  0.015 --hyper_learning_rate  0.5 --rho 0 --times  10 
    
      python3 -u main.py --dataset nist --optimizer fedfedl --model mclr.py --num_rounds  800 --clients_per_round 10 --batch_size 20 --num_epochs  40 --learning_rate  0.003 --hyper_learning_rate  0.2 --rho 0 --times  10 
      python3 -u main.py --dataset nist --optimizer fedsgd --model mclr.py --num_rounds  800 --clients_per_round 10 --batch_size 20 --num_epochs  40 --learning_rate  0.003 --hyper_learning_rate  0 --rho 0 --times  10 
      python3 -u main.py --dataset nist --optimizer fedfedl --model mclr.py --num_rounds  800 --clients_per_round 10 --batch_size 0 --num_epochs  40 --learning_rate  0.015 --hyper_learning_rate  0.5 --rho 0 --times  10 
      

  • To produce the figure for FEMNIST experiment, run

     python3 main_nist.py

  • For non-convex experiment: