-
Notifications
You must be signed in to change notification settings - Fork 1.3k
New issue
Have a question about this project? Sign up for a free GitHub account to open an issue and contact its maintainers and the community.
By clicking “Sign up for GitHub”, you agree to our terms of service and privacy statement. We’ll occasionally send you account related emails.
Already on GitHub? Sign in to your account
[BUG] Fail to chat with GraphRAG #415
Comments
Same problem, already in latest version on linux, using run_linux.sh to install , still facing Graphrag part not working issue I try modifying the run_linux.sh part like below:
` So it seems to be an env error, I have not yet seen into the pip list, which may find something |
Did you set the GraphRAG API key correctly as mentioned in https://github.com/Cinnamon/kotaemon#setup-graphrag? |
I got same error even though I have set the GraphRAG API key in the |
same error persists with setting GraphRAG API key in .env file |
我也有相同的的错误 parallelization: num_threads: 50 # the number of threads to use for parallel processingasync_mode: threaded # or asyncio embeddings: chunks: input: file_pattern: ".*\.txt$"cache: storage: connection_string: <azure_blob_storage_connection_string>container_name: <azure_blob_storage_container_name>reporting: connection_string: <azure_blob_storage_connection_string>container_name: <azure_blob_storage_container_name>entity_extraction: strategy: fully override the entity extraction strategy.type: one of graph_intelligence, graph_intelligence_json and nltkllm: override the global llm settings for this taskparallelization: override the global parallelization settings for this taskasync_mode: override the global async_mode settings for this taskprompt: "prompts/entity_extraction.txt" summarize_descriptions: llm: override the global llm settings for this taskparallelization: override the global parallelization settings for this taskasync_mode: override the global async_mode settings for this taskprompt: "prompts/summarize_descriptions.txt" claim_extraction: llm: override the global llm settings for this taskparallelization: override the global parallelization settings for this taskasync_mode: override the global async_mode settings for this taskenabled: trueprompt: "prompts/claim_extraction.txt" community_reports: llm: override the global llm settings for this taskparallelization: override the global parallelization settings for this taskasync_mode: override the global async_mode settings for this taskprompt: "prompts/community_report.txt" cluster_graph: embed_graph: num_walks: 10walk_length: 40window_size: 2iterations: 3random_seed: 597832umap: snapshots: local_search: text_unit_prop: 0.5community_prop: 0.1conversation_history_max_turns: 5top_k_mapped_entities: 10top_k_relationships: 10llm_temperature: 0 # temperature for samplingllm_top_p: 1 # top-p samplingllm_n: 1 # Number of completions to generatemax_tokens: 12000global_search: llm_temperature: 0 # temperature for samplingllm_top_p: 1 # top-p samplingllm_n: 1 # Number of completions to generatemax_tokens: 12000data_max_tokens: 12000map_max_tokens: 1000reduce_max_tokens: 2000concurrency: 32.env settings for OpenAIOPENAI_API_BASE=https://api.openai.com/v1OPENAI_API_BASE=https://api.deepseek.com/v1OPENAI_API_KEY=OPENAI_CHAT_MODEL=gpt-3.5-turboOPENAI_EMBEDDINGS_MODEL=text-embedding-ada-002settings for Azure OpenAIAZURE_OPENAI_ENDPOINT=AZURE_OPENAI_API_KEY=OPENAI_API_VERSION=2024-02-15-previewAZURE_OPENAI_CHAT_DEPLOYMENT=gpt-35-turboAZURE_OPENAI_EMBEDDINGS_DEPLOYMENT=text-embedding-ada-002settings for CohereCOHERE_API_KEY=<COHERE_API_KEY> settings for local modelsLOCAL_MODEL=llama3.1:8b settings for GraphRAGGRAPHRAG_API_KEY=<YOUR_OPENAI_KEY> set to true if you want to use customized GraphRAG config fileUSE_CUSTOMIZED_GRAPHRAG_SETTING=true settings for Azure DIAZURE_DI_ENDPOINT= settings for Adobe APIget free credential at https://acrobatservices.adobe.com/dc-integration-creation-app-cdn/main.html?api=pdf-extract-apialso install pip install "pdfservices-sdk@git+https://github.com/niallcm/pdfservices-python-sdk.git@bump-and-unfreeze-requirements"PDF_SERVICES_CLIENT_ID= settings for PDF.jsPDFJS_VERSION_DIST="pdfjs-4.0.379-dist" base) root@autodl-container-3c3348b04d-889a978b:~# ollama pull nomic-embed-text (base) root@autodl-container-3c3348b04d-889a978b:~/autodl-tmp/kotaemon_071# ollama pull llama3.1:8b |
output/create_final_nodes.parquet' |
FileNotFoundError: [Errno 2] No such file or directory: '/app/ktem_app_data/user_data/files/graphrag/d6d06e52-7acf-4ec6-b1f0-ec84b86fedaa/output/create_final_nodes.parquet' same error |
我用的服务器是autodl上的服务器。不知道是否和这个有关。 |
我用的服务器是autodl上的服务器。不知道是否和这个有关。 |
Description
Setting up quick upload event
Running on local URL: http://127.0.0.1:7860
To create a public link, set
share=True
inlaunch()
.User-id: None, can see public conversations: False
User-id: 1, can see public conversations: True
User-id: 1, can see public conversations: True
Session reasoning type None
Session LLM None
Reasoning class <class 'ktem.reasoning.simple.FullQAPipeline'>
Reasoning state {'app': {'regen': False}, 'pipeline': {}}
Thinking ...
Retrievers [DocumentRetrievalPipeline(DS=<kotaemon.storages.docstores.lancedb.LanceDBDocumentStore object at 0x00000273B5140CA0>, FSPath=WindowsPath('R:/kotaemon-app/ktem_app_data/user_data/files/index_1'), Index=<class 'ktem.index.file.index.IndexTable'>, Source=<class 'ktem.index.file.index.Source'>, VS=<kotaemon.storages.vectorstores.chroma.ChromaVectorStore object at 0x00000273B5140F40>, get_extra_table=False, llm_scorer=LLMTrulensScoring(concurrent=True, normalize=10, prompt_template=<kotaemon.llms.prompts.template.PromptTemplate object at 0x00000273B734EB60>, system_prompt_template=<kotaemon.llms.prompts.template.PromptTemplate object at 0x00000273B734EF20>, top_k=3, user_prompt_template=<kotaemon.llms.prompts.template.PromptTemplate object at 0x00000273B734D420>), mmr=False, rerankers=[CohereReranking(cohere_api_key='<COHERE_API_KEY>', model_name='rerank-multilingual-v2.0')], retrieval_mode='hybrid', top_k=10, user_id=1), GraphRAGRetrieverPipeline(DS=<theflow.base.unset_ object at 0x00000273FB1E1F60>, FSPath=<theflow.base.unset_ object at 0x00000273FB1E1F60>, Index=<class 'ktem.index.file.index.IndexTable'>, Source=<theflow.base.unset_ object at 0x00000273FB1E1F60>, VS=<theflow.base.unset_ object at 0x00000273FB1E1F60>, file_ids=['e6ae8d9e-2419-47bd-b6e2-3607d7f5ced2'], user_id=<theflow.base.unset_ object at 0x00000273FB1E1F60>)]
searching in doc_ids []
Traceback (most recent call last):
File "R:\kotaemon-app\install_dir\env\lib\site-packages\gradio\queueing.py", line 575, in process_events
response = await route_utils.call_process_api(
File "R:\kotaemon-app\install_dir\env\lib\site-packages\gradio\route_utils.py", line 276, in call_process_api
output = await app.get_blocks().process_api(
File "R:\kotaemon-app\install_dir\env\lib\site-packages\gradio\blocks.py", line 1923, in process_api
result = await self.call_function(
File "R:\kotaemon-app\install_dir\env\lib\site-packages\gradio\blocks.py", line 1520, in call_function
prediction = await utils.async_iteration(iterator)
File "R:\kotaemon-app\install_dir\env\lib\site-packages\gradio\utils.py", line 663, in async_iteration
return await iterator.anext()
File "R:\kotaemon-app\install_dir\env\lib\site-packages\gradio\utils.py", line 656, in anext
return await anyio.to_thread.run_sync(
File "R:\kotaemon-app\install_dir\env\lib\site-packages\anyio\to_thread.py", line 56, in run_sync
return await get_async_backend().run_sync_in_worker_thread(
File "R:\kotaemon-app\install_dir\env\lib\site-packages\anyio_backends_asyncio.py", line 2441, in run_sync_in_worker_thread
return await future
File "R:\kotaemon-app\install_dir\env\lib\site-packages\anyio_backends_asyncio.py", line 943, in run
result = context.run(func, *args)
File "R:\kotaemon-app\install_dir\env\lib\site-packages\gradio\utils.py", line 639, in run_sync_iterator_async
return next(iterator)
File "R:\kotaemon-app\install_dir\env\lib\site-packages\gradio\utils.py", line 801, in gen_wrapper
response = next(iterator)
File "R:\kotaemon-app\install_dir\env\lib\site-packages\ktem\pages\chat_init_.py", line 899, in chat_fn
for response in pipeline.stream(chat_input, conversation_id, chat_history):
File "R:\kotaemon-app\install_dir\env\lib\site-packages\ktem\reasoning\simple.py", line 705, in stream
docs, infos = self.retrieve(message, history)
File "R:\kotaemon-app\install_dir\env\lib\site-packages\ktem\reasoning\simple.py", line 503, in retrieve
retriever_docs = retriever_node(text=query)
File "R:\kotaemon-app\install_dir\env\lib\site-packages\theflow\base.py", line 1097, in call
raise e from None
File "R:\kotaemon-app\install_dir\env\lib\site-packages\theflow\base.py", line 1088, in call
output = self.fl.exec(func, args, kwargs)
File "R:\kotaemon-app\install_dir\env\lib\site-packages\theflow\backends\base.py", line 151, in exec
return run(*args, **kwargs)
File "R:\kotaemon-app\install_dir\env\lib\site-packages\theflow\middleware.py", line 144, in call
raise e from None
File "R:\kotaemon-app\install_dir\env\lib\site-packages\theflow\middleware.py", line 141, in call
_output = self.next_call(*args, **kwargs)
File "R:\kotaemon-app\install_dir\env\lib\site-packages\theflow\middleware.py", line 117, in call
return self.next_call(*args, **kwargs)
File "R:\kotaemon-app\install_dir\env\lib\site-packages\theflow\base.py", line 1017, in _runx
return self.run(*args, **kwargs)
File "R:\kotaemon-app\install_dir\env\lib\site-packages\ktem\index\file\graph\pipelines.py", line 345, in run
context_builder = self._build_graph_search()
File "R:\kotaemon-app\install_dir\env\lib\site-packages\ktem\index\file\graph\pipelines.py", line 204, in _build_graph_search
entity_df = pd.read_parquet(f"{INPUT_DIR}/{ENTITY_TABLE}.parquet")
File "R:\kotaemon-app\install_dir\env\lib\site-packages\pandas\io\parquet.py", line 667, in read_parquet
return impl.read(
File "R:\kotaemon-app\install_dir\env\lib\site-packages\pandas\io\parquet.py", line 267, in read
path_or_handle, handles, filesystem = _get_path_or_handle(
File "R:\kotaemon-app\install_dir\env\lib\site-packages\pandas\io\parquet.py", line 140, in _get_path_or_handle
handles = get_handle(
File "R:\kotaemon-app\install_dir\env\lib\site-packages\pandas\io\common.py", line 882, in get_handle
handle = open(handle, ioargs.mode)
FileNotFoundError: [Errno 2] No such file or directory: 'R:\kotaemon-app\ktem_app_data\user_data\files\graphrag\a8af56b7-550c-4f92-ba60-fcf2163838b7\output/create_final_nodes.parquet'
User-id: 1, can see public conversations: True
Reproduction steps
Screenshots
![DESCRIPTION](LINK.png)
Logs
No response
Browsers
No response
OS
No response
Additional information
I installed it with "....bat" on Windows system.
The text was updated successfully, but these errors were encountered: