An example of a normalizing flow for density estimation and sampling implemented in MLX. This example implements the real NVP (non-volume preserving) model.1
import mlx.core as mx
from flows import RealNVP
model = RealNVP(n_transforms=8, d_params=4, d_hidden=256, n_layers=4)
x = mx.random.normal(shape=(32, 4))
# Evaluate log-density
log_prob = model.log_prob(x=x)
# Draw samples
x_samples = model.sample(sample_shape=(32, 4))
Install the dependencies:
pip install -r requirements.txt
The example can be run with:
python main.py [--cpu]
This trains the normalizing flow on the two moons dataset and plots the result
in samples.png
. The optional --cpu
flag can be used to run the example on
the CPU, otherwise it will use the GPU by default.
For all available options, run:
python main.py --help
Footnotes
-
This example is from Density estimation using Real NVP, Dinh et al. (2016) ↩