-
Notifications
You must be signed in to change notification settings - Fork 2
/
microstructures.py
123 lines (121 loc) · 3.37 KB
/
microstructures.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
from pathlib import Path as path
import numpy as np
microstructures = [{
'data_path': '/ms_1p/dset0_sim',
'file_name': path("input/striped_normal_4x4x4.h5"),
'temp1': 300,
'temp2': 1300,
'n_tests': 100,
'sampling_alphas': None
}, {
'data_path': '/ms_1p/dset0_sim',
'file_name': path("input/sphere_normal_16x16x16_10samples.h5"),
'temp1': 300,
'temp2': 1300,
'n_tests': 10,
'sampling_alphas': None
}, {
'data_path': '/ms_1p/dset0_sim',
'file_name': path("input/sphere_normal_32x32x32_10samples.h5"),
'temp1': 300,
'temp2': 1300,
'n_tests': 10,
'sampling_alphas': None
}, {
'data_path': '/ms_1p/dset0_sim',
'file_name': path("input/sphere_combo_16x16x16_10samples.h5"),
'temp1': 300,
'temp2': 1300,
'n_tests': 10,
'sampling_alphas': None
}, {
'data_path': '/ms_1p/dset0_sim',
'file_name': path("input/octahedron_normal_16x16x16_10samples.h5"),
'temp1': 300,
'temp2': 1300,
'n_tests': 10,
'sampling_alphas': None
}, {
'data_path': '/ms_1p/dset0_sim',
'file_name': path("input/octahedron_combo_16x16x16_10samples.h5"),
'temp1': 300,
'temp2': 1300,
'n_tests': 10,
'sampling_alphas': None
}, {
'data_path':
'/ms_1p/dset0_sim',
'file_name':
path("input/octahedron_combo_32x32x32.h5"),
'temp1':
300,
'temp2':
1300,
'n_tests':
100,
'sampling_alphas':
np.asarray([
np.asarray([0., 1.]),
np.asarray([0., 0.82828283, 1.]),
np.asarray([0., 0.82828283, 0.93939394, 1.]),
np.asarray([0., 0.60606061, 0.82828283, 0.93939394, 1.]),
np.asarray([0., 0.60606061, 0.82828283, 0.93939394, 0.97979798, 1.])
], dtype=object)
}, {
'data_path':
'/image_data/dset_0_sim',
'file_name':
path("input/random_rve_vol20.h5"),
'temp1':
300,
'temp2':
1300,
'n_tests':
100,
'sampling_alphas':
np.asarray([
np.asarray([0., 1.]),
np.asarray([0., 0.85858586, 1.]),
np.asarray([0., 0.85858586, 0.94949495, 1.]),
np.asarray([0., 0.66666667, 0.85858586, 0.94949495, 1.]),
np.asarray([0., 0.66666667, 0.85858586, 0.94949495, 0.97979798, 1.])
], dtype=object)
}, {
'data_path':
'/image_data/dset_0_sim',
'file_name':
path("input/random_rve_vol40.h5"),
'temp1':
300,
'temp2':
1300,
'n_tests':
100,
'sampling_alphas':
np.asarray([
np.asarray([0., 1.]),
np.asarray([0., 0.8989899, 1.]),
np.asarray([0., 0.8989899, 0.96969697, 1.]),
np.asarray([0., 0.71717172, 0.8989899, 0.96969697, 1.]),
np.asarray([0., 0.51515152, 0.71717172, 0.8989899, 0.96969697, 1.])
], dtype=object)
}, {
'data_path':
'/image_data/dset_0_sim',
'file_name':
path('input/random_rve_vol60.h5'),
'temp1':
300,
'temp2':
1300,
'n_tests':
100,
'sampling_alphas':
np.asarray([
np.asarray([0., 1.]),
np.asarray([0., 0.8989899, 1.]),
np.asarray([0., 0.72727273, 0.8989899, 1.]),
np.asarray([0., 0.72727273, 0.8989899, 0.96969697, 1.]),
np.asarray([0., 0.52525253, 0.72727273, 0.8989899, 0.96969697, 1.])
], dtype=object)
}]