-
Notifications
You must be signed in to change notification settings - Fork 2
/
HeteroMultimer.py
1142 lines (864 loc) · 50 KB
/
HeteroMultimer.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539
540
541
542
543
544
545
546
547
548
549
550
551
552
553
554
555
556
557
558
559
560
561
562
563
564
565
566
567
568
569
570
571
572
573
574
575
576
577
578
579
580
581
582
583
584
585
586
587
588
589
590
591
592
593
594
595
596
597
598
599
600
601
602
603
604
605
606
607
608
609
610
611
612
613
614
615
616
617
618
619
620
621
622
623
624
625
626
627
628
629
630
631
632
633
634
635
636
637
638
639
640
641
642
643
644
645
646
647
648
649
650
651
652
653
654
655
656
657
658
659
660
661
662
663
664
665
666
667
668
669
670
671
672
673
674
675
676
677
678
679
680
681
682
683
684
685
686
687
688
689
690
691
692
693
694
695
696
697
698
699
700
701
702
703
704
705
706
707
708
709
710
711
712
713
714
715
716
717
718
719
720
721
722
723
724
725
726
727
728
729
730
731
732
733
734
735
736
737
738
739
740
741
742
743
744
745
746
747
748
749
750
751
752
753
754
755
756
757
758
759
760
761
762
763
764
765
766
767
768
769
770
771
772
773
774
775
776
777
778
779
780
781
782
783
784
785
786
787
788
789
790
791
792
793
794
795
796
797
798
799
800
801
802
803
804
805
806
807
808
809
810
811
812
813
814
815
816
817
818
819
820
821
822
823
824
825
826
827
828
829
830
831
832
833
834
835
836
837
838
839
840
841
842
843
844
845
846
847
848
849
850
851
852
853
854
855
856
857
858
859
860
861
862
863
864
865
866
867
868
869
870
871
872
873
874
875
876
877
878
879
880
881
882
883
884
885
886
887
888
889
890
891
892
893
894
895
896
897
898
899
900
901
902
903
904
905
906
907
908
909
910
911
912
913
914
915
916
917
918
919
920
921
922
923
924
925
926
927
928
929
930
931
932
933
934
935
936
937
938
939
940
941
942
943
944
945
946
947
948
949
950
951
952
953
954
955
956
957
958
959
960
961
962
963
964
965
966
967
968
969
970
971
972
973
974
975
976
977
978
979
980
981
982
983
984
985
986
987
988
989
990
991
992
993
994
995
996
997
998
999
1000
# -*- coding: utf-8 -*-
# Copyright (c) 2012 EPFL (Ecole Polytechnique federale de Lausanne)
# Laboratory for Biomolecular Modeling, School of Life Sciences
#
# POW is free software ;
# you can redistribute it and/or modify it under the terms of the GNU General Public License as published by the Free Software Foundation ;
# either version 2 of the License, or (at your option) any later version.
# POW is distributed in the hope that it will be useful, but WITHOUT ANY WARRANTY ;
# without even the implied warranty of MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE.
# See the GNU General Public License for more details.
# You should have received a copy of the GNU General Public License along with POW ;
# if not, write to the Free Software Foundation, Inc., 59 Temple Place, Suite 330, Boston, MA 02111-1307 USA.
#
# Author : Matteo Degiacomi, [email protected]
# Web site : http://lbm.epfl.ch
from Default import Parser as R
from Default import Space as S
from Default import Postprocess as PP
import numpy as np
import os, sys
from copy import deepcopy
from scipy.cluster.vq import *
from Protein import Protein
import AssemblyHeteroMultimer as A
import flexibility_new as F
import Multimer as M
from mpi4py import MPI
comm = MPI.COMM_WORLD
size = comm.Get_size()
rank = comm.Get_rank()
import CCC_simulMap as CCC
import ClusterAndDraw as CnD
import wx
class Parser(R):
def __init__(self):
self.add('rmsdSelect','rmsd_select','array str',"NA")
self.add('constraint','constraint','str',"NA")
self.add('energy','energy_type','str',"vdw")
self.add('detectClash','detect_clash','str',"on")
self.add('target','target','array float',np.array([]))
self.add('mode','mode','str',"seed")
self.add('mixingWeight','mix_weight','float', 0.2)
# style of the assembly, rigid or flexible
self.add('assembly_style','assembly_style','str',"rigid")
# flexibility flags
self.add('topology', 'topology', 'array str', 'NA')
self.add('trajectory','trajectory', 'array str','NA')
self.add('trajSelection','trajselection','str','NA')
self.add('ratio','ratio','float',0.9)
self.add('align', 'align', 'str', 'no')
self.add('projection','proj_file','str',"NA")
# monomer flags
self.add('monomer','monomer_file_name','array str', "NA")
# post processing flags
self.add('cluster_threshold','cluster_threshold','float',"NA")
self.add('output_folder','output_folder','str',"result")
# density map docking flag
self.add('density_map_docking','map_dock_OnOff', 'str', 'no')
self.add('density_map','density_map', 'str', 'NA')
def check_variables(self):
if self.cluster_threshold<0:
print "ERROR: clustering threshlod should be greater than 0!"
sys.exit(1)
# GIORGIO_CODE check existence of pdb files for the monomers in the folder XXXXXXXXXXXXXXXXXXXXXX
for nickname,pdb_file in self.monomer_file_name:
if pdb_file != "NA" and nickname != "NA": # and self.monomer_style=="rigid"
tmp=os.path.abspath(pdb_file)
if os.path.isfile(pdb_file)!=1 :
print "ERROR: monomer pdb file %s not found"%pdb_file
sys.exit(1)
# CHECKING THE TRAJECTORIES AND THE TOPOLOGY FILE
if self.assembly_style=="flexible":
for nickname,top_file in self.topology:
if top_file != "NA" and nickname != "NA": # and self.monomer_style=="rigid"
tmp=os.path.abspath(pdb_file)
if os.path.isfile(top_file)!=1 :
print "ERROR: monomer pdb file %s not found"%top_file
sys.exit(1)
for nickname,traj_file in self.trajectory:
if traj_file != "NA" and nickname != "NA": # and self.monomer_style=="rigid"
tmp=os.path.abspath(traj_file)
if os.path.isfile(traj_file)!=1 :
print "ERROR: monomer pdb file %s not found"%traj_file
sys.exit(1)
# checking that every trajectory has a topology:
if len(self.trajectory) != len(self.topology):
print "ERROR: unequal number of topologies and trajectories"
#check if number of target measures are provided
if len(self.target) == 0 :
print 'ERROR: target measures not specified!'
sys.exit(1)
#test if constraint file exists, and function constaint_check is available
#try:
exec 'import %s as constraint'%(self.constraint.split('.')[0])
#except:
# print "ERROR: load of user defined constraint function failed!"
# sys.exit(1)
try:
constraint.constraint_check
except AttributeError:
print 'ERROR: constraint_check function not found in file %s'%self.constraint
sys.exit(1)
# check whether density flag is on or off
if self.map_dock_OnOff == "on" :
if self.density_map != "NA":
self.map_dock_OnOff = True
else:
print 'ERROR: if density map flag is on, a density map should be present in the directory'
sys.exit(1)
print ">> Electron Density Map Docking Mode"
elif self.map_dock_OnOff == "off":
self.map_dock_OnOff = False
else:
print 'ERROR: density_map_docking should be either "on" or "off"'
sys.exit(1)
class Structure():
def __init__ (self):
# initialising the values
self.monomer = "NA" # the monomeric unit
self.pdb_file_name = "NA"
self.index_CA_monomer = "NA"
self.flexibility = "NA"
self.init_coords = "NA"
def read_pdb (self, pdb):
self.pdb_file_name = pdb
self.monomer = Protein()
self.monomer.import_pdb(pdb)
self.init_coords = self.monomer.get_xyz()
def compute_PCA (self, topology,trajectory,align,ratio,mode, proj_file):
self.flexibility = F.Flexibility_PCA()
self.flexibility.compute_eigenvectors(topology,trajectory,align,ratio,mode, proj_file)
def setCoords (self):
self.init_coords = self.monomer.get_xyz()
#def get_index
class Data:
index_ligand=[]
index_receptor=[]
cg_atoms=[]
def __init__(self,params):
self.structure_hash = {}
self.structure_list = []
volume_structure_hash = {} # this is used to get the biggest structure
# GIORGIO_CODE create structure instances of the rigid monomers
for nickName,pdb_file in params.monomer_file_name:
# create instance of the structure class
s = Structure()
s.read_pdb (pdb_file)
volume_structure_hash[len(s.monomer.get_xyz())] = [s, nickName]
# create structure instance for the flexible monomers
if params.assembly_style=="flexible":
print ">> flexible docking requested for structures, launching PCA..."
for nickName, traj_file in params.trajectory:
try:
# get the topology file:
for nickName2, top_file in params.topology:
if nickName2 == nickName:
break
# create the structure and compute the PCA
s = Structure()
s.compute_PCA(top_file, traj_file, params.align, params.ratio, params.mode, params.proj_file)
s.read_pdb("protein.pdb")
volume_structure_hash[len(s.monomer.get_xyz())] = [s, nickName]
except ImportError, e:
sys.exit(1)
# TODO: work on the deform mode, but ask Matteo before
if params.mode=="deform":
self.structure_ligand=Protein()
self.structure_ligand.import_pdb("protein.pdb")
self.ligand.import_pdb("CA.pdb")
# getting the biggest structure and putting at the beginning so that it is fixed
sorted_volumes = volume_structure_hash.keys()
sorted_volumes.sort()
sorted_volumes.reverse()
for i in sorted_volumes:
# insert the elements in a list
self.structure_list.append( volume_structure_hash[i][0] ) # insert the structure
self.structure_hash[volume_structure_hash[i][1]] = self.structure_list.index(volume_structure_hash[i][0])
self.structure_list_and_name = [self.structure_list, self.structure_hash]
print self.structure_list_and_name
#LIGAND STRUCTURE
#self.ligand = Protein()
# if params.assembly_style=="flexible":
# print ">> flexible docking requested for ligand, launching PCA..."
# try:
# self.flex_ligand=F.Flexibility_PCA()
# self.flex_ligand.compute_eigenvectors(params.ligand_topology,params.ligand_trajectory,params.ligand_align,params.ligand_ratio,params.mode,params.ligand_proj_file)
# self.ligand.import_pdb("protein.pdb") # importing the middle structure
# except ImportError, e:
# sys.exit(1)
#
# if params.mode=="deform":
# self.structure_ligand=Protein()
# self.structure_ligand.import_pdb("protein.pdb")
# self.ligand.import_pdb("CA.pdb")
#else:
#load monomeric structure (the pdb file)
#self.ligand.import_pdb(params.ligand_file_name)
if params.energy_type=="vdw":
self.CA_index_of_structures = self.get_index(["CA"])
#[self.index_ligand,self.index_receptor]=self.get_index(["CA","CB"])
# if the density map docking is on load the structure into data:
if params.map_dock_OnOff:
self.density_map_fileName = params.density_map
def get_index(self,atoms=["CA","CB"]):
#generate a dummy assembly and extract the indexes where atoms of interest are located
# first create the numpy array containing all null translation and rotation for each of the mobile structures
null_coordinate_array = np.zeros((len(self.structure_list)-1)*6)
assembly = A.AssemblyHeteroMultimer(self.structure_list_and_name)
assembly.place_all_mobile_structures(null_coordinate_array)
#ligand_index=[]
#receptor_index=[]
index_of_all_structures = [] # this is going to be an array of arrays
for aname in atoms:
for structure_number in xrange(0,len(self.structure_list),1):
index_of_all_structures.append([])
#append indexes of an element in atoms list for all structures
[m,index]=assembly.atomselect_structure(structure_number , "*","*",aname,True)
for i in index:
index_of_all_structures[structure_number].append(i)
##append indexes of an element in atoms list for receptor
#[m,index]=assembly.atomselect_receptor("*","*",aname,True)
#for i in index:
#receptor_index.append(i)
return index_of_all_structures
class Space(S):
def __init__(self,params,data):
len_flexi=0
if params.assembly_style=="flexible":
for structure in data.structure_list:
if structure.flexibility != "NA":
len_flexi += len(structure.flexibility.eigenspace_size)
len_rec=0
#if params.receptor_style=="flexible":
#len_rec=len(data.flex_receptor.eigenspace_size)
len_rigid_dim = 6*(len(data.structure_list)-1)
# for hetero-multimer assembly, given that every MOBILE (so exept the first one) protein has 6 degrees of freedom
self.low=np.zeros(len_rigid_dim +len_flexi)
self.high=np.zeros(len_rigid_dim +len_flexi)
self.cell_size=np.zeros(len_rigid_dim +len_flexi)
self.boundary_type=np.zeros(len_rigid_dim +len_flexi)
#box size as given by all the structures dimensions
first_min=np.min(data.structure_list[0].monomer.get_xyz(),axis=0)
first_max=np.max(data.structure_list[0].monomer.get_xyz(),axis=0)
distance_array = []
for x in xrange (1,len(data.structure_list),1):
distance_array.append(np.max(data.structure_list[x].monomer.get_xyz(),axis=0) - np.min(data.structure_list[x].monomer.get_xyz(),axis=0))
distance_array = np.array(distance_array)
summed_distances = np.sum(distance_array, axis = 0)
box_min=first_min-(summed_distances)
box_max=first_max+(summed_distances)
if len(params.high_input)!=len(params.low_input):
print "ERROR: boundaryMin and boundaryMax should have the same length!"
sys.exit(1)
#assign low boundaries
if params.low_input!="NA" :
if len(params.low_input)== len_rigid_dim :
for i in xrange(0,len(params.low_input),1):
self.low[i]=params.low_input[i]
else:
print "ERROR: boundaryMin should contain 6 values (3 rotations, 3 translations)"
sys.exit(1)
else:
print "WARNING: boundaryMin undefined, using default values"
i = 0
for x in xrange(0, len_rigid_dim ,1):
if i < 3:
self.low[x] = box_min[i]
i += 1
elif (i > 2) and (i != 6):
self.low[x] = 0.0
i+=1
if i == 6:
i = 0
#assign high boundaries
if params.high_input!="NA" :
if len(params.high_input)== len_rigid_dim:
for i in xrange(0,len(params.high_input),1):
self.high[i]=params.high_input[i]
else:
print "ERROR: boundaryMax should contain 6 values (3 rotation, 3 translation)"
sys.exit(1)
else:
print "WARNING: boundaryMax undefined, using default values"
i = 0
for x in xrange(0, len_rigid_dim ,1):
if i < 3:
self.high[x] = box_max[i]
i += 1
elif (i > 2) and (i != 6):
self.high[x] = 360.0
i+=1
if i == 6:
i = 0
# add all the flexible structures eigenvector fluctuations in the search space
if params.assembly_style=="flexible":
i = 0
for structure in data.structure_list:
if structure.flexibility != "NA":
for x in xrange(0, len(structure.flexibility.eigenspace_size),1):
self.low[len_rigid_dim+i]=-structure.flexibility.eigenspace_size[x]
self.high[len_rigid_dim+i]= structure.flexibility.eigenspace_size[x]
i += 1
#add ligand eigenvector fluctuations in search space
# for i in xrange(0,len_flexi,1):
# self.low[len_rigid_dim+i]=-data.flex_ligand.eigenspace_size[i]
# self.high[len_rigid_dim+i]=data.flex_ligand.eigenspace_size[i]
#check boundary conditions consistency
if len(self.low) != len(self.high):
print 'ERROR: dimensions of min and max boundary conditions are not the same'
sys.exit(1)
if (self.low>self.high).any():
print 'ERROR: a lower boundary condition is greated than a higher one'
sys.exit(1)
#define cell size
self.cell_size=self.high-self.low
#set boundary type (periodic for angles, repulsive for translation)
if params.boundary_type=="NA":
for i in xrange(0,len(self.low),1):
self.boundary_type[i]=0
elif params.boundary_type!="NA" and len(params.boundary_type)!=len(self.low):
print 'ERROR: boundaries type inconsistent with system dimensions'
print 'ERROR: %s dimensions given, but %s needed!'%(len(params.boundary_type),len(self.low))
sys.exit(1)
else:
for i in xrange(0,len(self.low),1):
self.boundary_type[i]=params.boundary_type[i]
class Fitness:
def __init__(self,data,params):
self.mode=params.mode
self.map_docking_flag = params.map_dock_OnOff # do so because you want to pass this var to the function evaluate below
# loading the reference/experimental density map file if flag is on
if self.map_docking_flag:
self.density_map_fileName = params.density_map
#check if target exists
try: params.target
except NameError:
print 'ERROR: target measures not found'
sys.exit(1)
self.target=params.target
self.constraint=params.constraint.split('.')[0] # Xx constraint [rigidRandom].py
#test if constraint file exists, and function constaint_check is available
try:
exec 'import %s as constraint'%(self.constraint)
except ImportError, e:
print "ERROR: load of user defined constraint function failed!"
sys.exit(1)
try: constraint.constraint_check
except NameError:
print 'ERROR: constraint_check function not found'
#data to manipulate
self.data=data
self.assembly_style=params.assembly_style
#self.receptor_style=params.receptor_style
self.len_lig=0
#if params.ligand_style=="flexible":
#self.len_lig=len(self.data.flex_ligand.eigenspace_size)
self.len_rec=0
#if params.receptor_style=="flexible":
#self.len_rec=len(self.data.flex_receptor.eigenspace_size)
self.c1=params.mix_weight
def evaluate(self,num,pos):
exec 'import %s as constraint'%(self.constraint)
import AssemblyHeteroMultimer as A
# if ligand is flexible, select the most appropriate frame
for structure in self.data.structure_list:
if self.assembly_style=="flexible" and structure.flexibility != "NA":
len_rigid_dim = 6*(len(self.data.structure_list)-1)
i = 0
deform_coeffs = self.coordinateArray[n][len_rigid_dim : len_rigid_dim + i + len(structure.flexibility.eigenspace_size) ]
if self.mode=="seed":
pos_eig=structure.flexibility.proj[:,structure.flexibility.centroid]+deform_coeffs
code,min_dist=vq(structure.flexibility.proj.transpose(),np.array([pos_eig]))
target_frame=min_dist.argmin()
coords=structure.flexibility.all_coords[:,target_frame]
coords_reshaped=coords.reshape(len(coords)/3,3)
structure.monomer.set_xyz(coords_reshaped)
else:
coords=structure.monomer.get_xyz()
coords_reshaped=coords.reshape(len(coords)*3)
for n in xrange(0,len(deform_coeffs),1):
coords_reshaped+=deform_coeffs[n]*structure.flexibility.eigenvec[:,n]
structure.monomer.set_xyz(coords_reshaped.reshape(len(coords_reshaped)/3,3))
i += len(structure.flexibility.eigenspace_size)
else:
structure.monomer.set_xyz(structure.init_coords)
# after getting the positions from PSO, create a new assembly according to those positions
self.assembly = A.AssemblyHeteroMultimer(self.data.structure_list_and_name)
self.assembly.place_all_mobile_structures(pos)
# ------------------------------- DEFAULT FITNESS FUNCTION --------------------------
if self.map_docking_flag == False:
#if needed, compute error with respect of target measures
distance=0
if len(self.target)!=0:
measure = constraint.constraint_check(self.data, self.assembly) # returns the distances between some ligand and receptor atoms
if len(measure) != len(self.target) :
print 'ERROR: measure = %s'%measure
print 'ERROR: target measure = %s'%self.target
print 'ERROR: constraint file produced %s measures, but %s target measures are provided!'%(len(measure),len(self.target))
sys.exit(1)
diff=self.target-np.array(measure)
distance=np.sqrt(np.dot(diff,diff))
#c1=0.1
#compute system energy
energy=0
if len(self.data.CA_index_of_structures[0])>0:
c1=self.c1 # was 0.2
energy=self.interface_vdw()
return c1*energy+(1-c1)*distance
#return energy/len(self.data.index_ligand)+distance
else:
print "WHAT THE...???"
#else:
# c1=0.001
# energy=self.measure_cg_energy(self.assembly,num)
# #fitness = coulomb+vdw+distance
# return c1*(energy[1]+energy[2])+(1-c1)*distance
# --------------------------------- DENSITY MAP DOCKING ----------------------------
elif self.map_docking_flag == True:
# the coefficient for CCC, bigger one will give a heavier weight for density map docking
c2 = 20 # try make vary from 1 to 100
#proceed to calculate check for the geometry constraints
distance=0
if len(self.target)!=0:
measure = constraint.constraint_check(self.data, self.assembly) # returns the distances between some ligand and receptor atoms
if len(measure) != len(self.target) :
print 'ERROR: measure = %s'%measure
print 'ERROR: target measure = %s'%self.target
print 'ERROR: constraint file produced %s measures, but %s target measures are provided!'%(len(measure),len(self.target))
sys.exit(1)
diff=self.target-np.array(measure)
distance=np.sqrt(np.dot(diff,diff))
# compute the systems energy
energy=0
if len(self.data.CA_index_of_structures[0])>0:
c1=self.c1
energy=self.interface_vdw()
fitness_score = c1*energy+(1-c1)*distance + c2 # the + 1 at the end is used to have a better score when good map dock fitting
# -------------------- DENSITY MAP DOCKING FITNESS
if fitness_score < (c2 + 10):
resol = 15
print ">>> Density map refinement rank "+str(rank)
# create the pbd file to be transformed into the density map
self.assembly.create_PDB_for_density_map(rank)
#create the simulated density map
CCC.make_simulated_map ("simulated_map"+str(rank)+".pdb", rank, 1, resol )
#compare the two density maps and extract their cross correlation coefficient:
ccc = CCC.compute_corr(self.density_map_fileName, "simulated_map"+str(rank)+".sit", resol)
#return the score of final function:
return c1*energy+(1-c1)*distance+ c2*(1 - ccc)
else:
return fitness_score
def measure_target(self):
#measure constraints
measure = constraint.constraint_check(self.assembly)
if len(measure) != len(self.target) :
print 'ERROR: measure = %s'%measure
print 'ERROR: target measure = %s'%self.target
print 'ERROR: constraint file produced %s measures, but %s target measures are provided!'%(len(measure),len(self.target))
sys.exit(1)
#measure distance within target values and obtained values
diff=self.target-np.array(measure)
distance=np.sqrt(np.dot(diff,diff))
return distance
def interface_vdw(self):
epsilon=1.0
sigma=4.7
cutoff=12.0
energy=0
# for Heteromultimer assembly, you need to compute the energy of every structure against each other:
for structure1_index in xrange (0,len(self.data.structure_list), 1):
for structure2_index in xrange (structure1_index,len(self.data.structure_list), 1):
d=[]
if structure1_index == structure2_index:
pass
else:
m1=self.assembly.get_structure_xyz(structure1_index)[self.data.CA_index_of_structures[structure1_index]]
m2=self.assembly.get_structure_xyz(structure2_index)[self.data.CA_index_of_structures[structure2_index]]
#extract coords of monomers 1 and 2 of multimeric structure according to desired atoms
#m1=self.assembly.get_ligand_xyz()[self.data.index_ligand]
#m2=self.assembly.get_receptor_xyz()[self.data.index_receptor]
#extract distances of every atom from all the others
for i in xrange(0,len(m1),1):
d.append(np.sqrt(np.sum((m2-m1[i])**2,axis=1)))
dist=np.array(d)
#detect interfacing atoms (atom couples at less than a certain cutoff distance
couples=np.array(np.where(dist<cutoff)) #detect couples of clashing residues
for i in xrange(0,len(couples[0]),1):
d=dist[couples[0,i],couples[1,i]]
energy+=4*epsilon*((sigma/d)**9-(sigma/d)**6)
return energy
class Postprocess(PP):
def __init__(self,data,params):
self.data=data
self.params=params
self.len_lig=0
#if params.assembly_style=="flexible":
#self.len_lig=len(self.data.flex_ligand.eigenspace_size)
self.len_rec=0
#if params.receptor_style=="flexible":
#self.len_rec=len(self.data.flex_receptor.eigenspace_size)
#load constraint file
self.constraint=params.constraint.split('.')[0]
try:
exec 'import %s as constraint'%(self.constraint)
except ImportError, e:
print "ERROR: load of user defined constraint function failed!"
sys.exit(1)
try:
constraint.constraint_check
except NameError:
print 'ERROR: constraint_check function not found'
#clustering according to rmsd of solutions in search space
def run(self):
if rank == 0:
#create output directory for generated PDB
self.OUTPUT_DIRECTORY=self.params.output_folder
if os.path.isdir(self.OUTPUT_DIRECTORY)!=1:
os.mkdir(self.OUTPUT_DIRECTORY)
#use superclass method to filter acceptable solutions
self.log=self.select_solutions(self.params) # -> the result is in fact the self.filter_log already
print ">> %s solutions filtered"%len(self.log[:,1])
if len(self.log[:,1])==0:
return
self.coordinateArray = deepcopy(self.log) #[:, 0:len(self.log[0,:])].astype(float)
self.dummyMatrix = np.empty(len(self.coordinateArray)**2)
self.dummyMatrix.fill(100)
self.distanceMatrix = self.dummyMatrix.reshape(len(self.coordinateArray),len(self.coordinateArray))
self.dummyMatrix = []
# variables to sliece the matrix into equal portions
total_size = (len(self.coordinateArray)**2)/2
binNo = size
indexes_per_bin = total_size / binNo
soustractor = 1
indexBinHash = {}
accumulator = 0
rankIterator = 0
lowBoundary = 0
# getting the sliced indexes
for i in xrange(0, len(self.distanceMatrix),1):
array_len = len(self.distanceMatrix[i]) - soustractor
accumulator += array_len
if accumulator > indexes_per_bin:
indexBinHash[rankIterator] = [lowBoundary, i]
# change the parameters
rankIterator += 1
lowBoundary = i
# empty the accumulator
accumulator = 0
soustractor += 1
if lowBoundary < i:
indexBinHash[binNo-1] = [lowBoundary, i]
print ">> Starting distance matrix creation:"
print ">> Clustering best solutions..."
else:
self.distanceMatrix = None
self.coordinateArray = None
indexBinHash = None
#synchronize all processers
comm.Barrier()
self.distanceMatrix=comm.bcast(self.distanceMatrix,root=0)
self.coordinateArray=comm.bcast(self.coordinateArray,root=0)
indexBinHash=comm.bcast(indexBinHash,root=0)
comm.Barrier()
exec 'import %s as constraint'%(self.constraint)
#clusters_file=open("%s/dist_matrix.dat"%self.params.output_folder,"w") # Xx this where you write the solution file
#generate a dummy multimer and extract the indexes of C alpha
# null_coordinate_array = np.zeros((len(self.data.structure_list)-1)*6)
# assembly = A.AssemblyHeteroMultimer(self.data.structure_list)
# assembly.place_all_mobile_structures(null_coordinate_array)
# Get the CA indexes already computed from the data class
self.CA_index_of_all_structures = self.data.CA_index_of_structures
#[m,index]=assembly.atomselect_of_structures(1,"*","*","CA",True) # -> extracting indexes of CA
#load the monomeric structure positions (needed for resetting atom position after displacement)
# s = Protein()
# s.import_pdb(self.params.pdb_file_name)
# coords=s.get_xyz()
if len(self.coordinateArray) > (size *3):
#----------------------------- first create the rmsd matrix
# creating variables to check for status of clustering of process 0
if rank == 0:
repetitions = indexBinHash[rank][1] - indexBinHash[rank][0]
totalIterations = len(self.coordinateArray) * repetitions
counter = 0
printresent = 1 # those are used not to repeat the state of the clustering
printPast = 0
counter = 0
#synchronize all processes (get current timestep and repeat from swarm state)
pieceOfCoordinateArray = np.array([])
if rank in indexBinHash.keys():
#Starting the creation with 2 loops
for n in xrange(indexBinHash[rank][0],len(self.coordinateArray),1):
if n == indexBinHash[rank][1]:
break
for m in xrange (n,len(self.coordinateArray),1):
# make sure you are not using the same structures against themselves
if n == m:
# # add a "wrong" distance in the matrix to only have half the matrix
pass
else:
# --------------------------------- MODIFY THE FLEXIBLE STRUCTURES FOR THE 1ST ASSEMBLY AND SET COORDS
for structure in self.data.structure_list:
if self.params.assembly_style=="flexible" and structure.flexibility != "NA":
len_rigid_dim = 6*(len(self.data.structure_list)-1)
i = 0
deform_coeffs = self.coordinateArray[n][len_rigid_dim : len_rigid_dim + i + len(structure.flexibility.eigenspace_size) ]
if self.params.mode=="seed":
pos_eig=structure.flexibility.proj[:,structure.flexibility.centroid]+deform_coeffs
code,min_dist=vq(structure.flexibility.proj.transpose(),np.array([pos_eig]))
target_frame=min_dist.argmin()
coords=structure.flexibility.all_coords[:,target_frame]
coords_reshaped=coords.reshape(len(coords)/3,3)
structure.monomer.set_xyz(coords_reshaped)
else:
coords=structure.monomer.get_xyz()
coords_reshaped=coords.reshape(len(coords)*3)
for n in xrange(0,len(deform_coeffs),1):
coords_reshaped+=deform_coeffs[n]*structure.flexibility.eigenvec[:,n]
structure.monomer.set_xyz(coords_reshaped.reshape(len(coords_reshaped)/3,3))
i += len(structure.flexibility.eigenspace_size)
else:
structure.monomer.set_xyz(structure.init_coords)
# ------------------- CREATING 1ST ASSEMBLY
assembly1 = A.AssemblyHeteroMultimer(self.data.structure_list_and_name)
assembly1.place_all_mobile_structures(self.coordinateArray[n][:len(self.coordinateArray[n])-1])
# get the coordinates of all the structures to get the coordinates of Assembly
coordinate_of_assembly1_structures = []
for structure_index in xrange(0,len(self.data.structure_list), 1):
coordinate_of_assembly1_structures.append(assembly1.get_structure_xyz(structure_index))
m1 = np.concatenate((coordinate_of_assembly1_structures),axis=0)
# --------------------------------- MODIFY THE FLEXIBLE STRUCTURES FOR THE 2ND ASSEMBLY
for structure in self.data.structure_list:
if self.params.assembly_style=="flexible" and structure.flexibility != "NA":
len_rigid_dim = 6*(len(self.data.structure_list)-1)
i = 0
deform_coeffs = self.coordinateArray[m][len_rigid_dim : len_rigid_dim + i + len(structure.flexibility.eigenspace_size) ]
if self.params.mode=="seed":
pos_eig=structure.flexibility.proj[:,structure.flexibility.centroid]+deform_coeffs
code,min_dist=vq(structure.flexibility.proj.transpose(),np.array([pos_eig]))
target_frame=min_dist.argmin()
coords=structure.flexibility.all_coords[:,target_frame]
coords_reshaped=coords.reshape(len(coords)/3,3)
structure.monomer.set_xyz(coords_reshaped)
else:
coords=structure.monomer.get_xyz()
coords_reshaped=coords.reshape(len(coords)*3)
for n in xrange(0,len(deform_coeffs),1):
coords_reshaped+=deform_coeffs[n]*structure.flexibility.eigenvec[:,n]
structure.monomer.set_xyz(coords_reshaped.reshape(len(coords_reshaped)/3,3))
i += len(structure.flexibility.eigenspace_size)
else:
structure.monomer.set_xyz(structure.init_coords)
# ------------------- CREATING 2ND ASSEMBLY
assembly2 = A.AssemblyHeteroMultimer(self.data.structure_list_and_name)
assembly2.place_all_mobile_structures(self.coordinateArray[m][:len(self.coordinateArray[m])-1])
# get the coordinates of all the structures to get the coordinates of Assembly
coordinate_of_assembly2_structures = []
for structure_index in xrange(0,len(self.data.structure_list), 1):
coordinate_of_assembly2_structures.append(assembly2.get_structure_xyz(structure_index))
m2 = np.concatenate((coordinate_of_assembly2_structures),axis=0)
# calculate RMSD between the 2
rmsd=self.align(m1,m2) # --> comes from Default.Postprocess.align()
self.distanceMatrix[n][m] = rmsd
if rank == 0:
counter += 1.0
printPresent = int((counter / totalIterations) * 100)
if (printPresent%10) == 0 and printPresent != printPast:
print "> ~"+str( printPresent )+" % structures clustered "
printPast = printPresent
pieceOfCoordinateArray = self.distanceMatrix[indexBinHash[rank][0]:indexBinHash[rank][1],:]
# print " Clustering process "+str(rank)+" finished"
comm.Barrier()
pieces = comm.gather(pieceOfCoordinateArray,root=0)
comm.Barrier()
if rank == 0:
self.distanceMatrix = []
for elem in pieces:
if len(elem) < 2:
pass
else:
for arrays in elem:
self.distanceMatrix.append(arrays)
lastRow = np.empty(len(self.coordinateArray))
lastRow.fill(100)
self.distanceMatrix.append(lastRow)
self.distanceMatrix = np.array(self.distanceMatrix)
np.transpose(self.distanceMatrix)
print len(self.distanceMatrix)
print len(self.distanceMatrix[0])
# np.savetxt('coordinateArray.txt', self.coordinateArray) # coordinateArray[0:50,0:50]
# np.savetxt('np_matrix.txt', self.distanceMatrix) # distanceMatrix[0:50]
else:
if rank == 0:
print ">> less than "+str(size*3)+" solutions, proceeding ..."
for n in xrange(0,len(self.coordinateArray),1):
for m in xrange (n,len(self.coordinateArray),1):
# make sure you are not using the same structures against themselves
if n == m:
# # add a "wrong" distance in the matrix to only have half the matrix
pass
else:
# --------------------------------- MODIFY THE FLEXIBLE STRUCTURES FOR THE 1ST ASSEMBLY
for structure in self.data.structure_list:
if self.params.assembly_style=="flexible" and structure.flexibility != "NA":
len_rigid_dim = 6*(len(self.data.structure_list)-1)
i = 0
deform_coeffs = self.coordinateArray[n][len_rigid_dim : len_rigid_dim + i + len(structure.flexibility.eigenspace_size) ]
if self.params.mode=="seed":
pos_eig=structure.flexibility.proj[:,structure.flexibility.centroid]+deform_coeffs
code,min_dist=vq(structure.flexibility.proj.transpose(),np.array([pos_eig]))
target_frame=min_dist.argmin()
coords=structure.flexibility.all_coords[:,target_frame]
coords_reshaped=coords.reshape(len(coords)/3,3)
structure.monomer.set_xyz(coords_reshaped)
else:
coords=structure.monomer.get_xyz()
coords_reshaped=coords.reshape(len(coords)*3)
for n in xrange(0,len(deform_coeffs),1):
coords_reshaped+=deform_coeffs[n]*structure.flexibility.eigenvec[:,n]
structure.monomer.set_xyz(coords_reshaped.reshape(len(coords_reshaped)/3,3))
i += len(structure.flexibility.eigenspace_size)
else:
structure.monomer.set_xyz(structure.init_coords)
# ------------------- CREATING 1ST ASSEMBLY
assembly1 = A.AssemblyHeteroMultimer(self.data.structure_list_and_name)
assembly1.place_all_mobile_structures(self.coordinateArray[n][:len(self.coordinateArray[n])-1])
# get the coordinates of all the structures to get the coordinates of Assembly
coordinate_of_assembly1_structures = []
for structure_index in xrange(0,len(self.data.structure_list), 1):
coordinate_of_assembly1_structures.append(assembly1.get_structure_xyz(structure_index))
m1 = np.concatenate((coordinate_of_assembly1_structures),axis=0)
# --------------------------------- MODIFY THE FLEXIBLE STRUCTURES FOR THE 2ND ASSEMBLY
for structure in self.data.structure_list:
if self.params.assembly_style=="flexible" and structure.flexibility != "NA":
len_rigid_dim = 6*(len(self.data.structure_list)-1)
i = 0
deform_coeffs = self.coordinateArray[n][len_rigid_dim : len_rigid_dim + i + len(structure.flexibility.eigenspace_size) ]
if self.params.mode=="seed":
pos_eig=structure.flexibility.proj[:,structure.flexibility.centroid]+deform_coeffs
code,min_dist=vq(structure.flexibility.proj.transpose(),np.array([pos_eig]))
target_frame=min_dist.argmin()
coords=structure.flexibility.all_coords[:,target_frame]
coords_reshaped=coords.reshape(len(coords)/3,3)
structure.monomer.set_xyz(coords_reshaped)
else:
coords=structure.monomer.get_xyz()
coords_reshaped=coords.reshape(len(coords)*3)
for n in xrange(0,len(deform_coeffs),1):
coords_reshaped+=deform_coeffs[n]*structure.flexibility.eigenvec[:,n]
structure.monomer.set_xyz(coords_reshaped.reshape(len(coords_reshaped)/3,3))
i += len(structure.flexibility.eigenspace_size)
else:
structure.monomer.set_xyz(structure.init_coords)