-
Notifications
You must be signed in to change notification settings - Fork 0
/
refineNet.py
207 lines (178 loc) · 8.84 KB
/
refineNet.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
#copyright (c) 2021-present, jialin yuan@Deep Vision Group
from torchvision.ops import roi_align
import torch
import torch.nn as nn
import torch.nn.functional as F
class RoIAlign(nn.Module):
def __init__(self, out_size=(14, 14), aligned=True):
super(RoIAlign, self).__init__()
self.out_size = out_size
self.aligned = aligned
def forward(self, input, bboxes, spatial_scale=1.0):
'''
@Param: input--tensor of size [bs, ch, ht, wd]
bboxes -- float tensor of size [N,,,, 5] with [b_idx, x0, y0, x1, y1], or list of
tensor with size [n_i, 4], with each one corresponding to one batch example
spatial_scale -- scale that map feature coordinates to bboxes' coordinates.
( e.x. feature (8, 8) map to box (16,16) with scale 0.5)
@Output: tensor of size [N, ch, out_size[0], out_size[1]]
'''
rois = roi_align(input.float(), bboxes.float(), spatial_scale=spatial_scale,
output_size=self.out_size) # , aligned=self.aligned)
'''
current torch version is 1.3.0, its roi_align has no argument aligned
'''
return rois
class RoIExtractor(nn.Module):
def __init__(self, roi_size = (14, 14), fea_channels=[256], doConv=True):
super(RoIExtractor, self).__init__()
self.roi_align = RoIAlign(out_size=roi_size)
relu_func = nn.LeakyReLU(0.1)
self.doConv = doConv
if doConv:
blocks = []
for in_channel in fea_channels:
one_block = nn.Sequential(
nn.Conv2d(in_channel, 256, kernel_size=3, padding=(1,1), padding_mode='replicate'),
nn.BatchNorm2d(256),
#relu_func,
)
blocks.append(one_block)
self.conv_layers = nn.ModuleList(blocks)
def forward(self, bboxes, features, fea_scales=[1.0]):
'''
@Param: bboxes -- float tensor of size [N,,,, 5] with [b_idx, x0, y0, x1, y1], or list of
tensor with size [n_i, 4], with each one corresponding to one batch example
features -- list of features to be extracted, in size [bs, ch, ht', wd']
scales -- list of scale ratio that map feature coordinates to bboxes' coordinates
@ Output: list of features extract from different layer
'''
ret = []
for k in range(len(features)):
x = self.roi_align(features[k], bboxes, spatial_scale=fea_scales[k])
if self.doConv:
x = self.conv_layers[k](x)
ret.append(x)
return ret
class RefineNet(nn.Module):
'''
this class takes (backbone features, predicted instance label) and object candidates,
it performs roi_align to extract features, then predict class score, iou score, refinement
mask for each candidate
'''
def __init__(self, roi_size=(14, 14), fea_layers=[256],
num_classes=21, pi_margin=1.0):
super(RefineNet, self).__init__()
self.roi_size = roi_size
self.num_classes = num_classes
self.pi_margin = pi_margin
self.RoI_extractor_mask = RoIExtractor(roi_size = roi_size, doConv=False)
self.RoI_extractor_net = RoIExtractor(roi_size = roi_size, doConv=True)
relu_func = nn.LeakyReLU(0.1)
in_channels = sum(fea_layers) + 1
hiddens = [256, 512]
self.conv_0 = nn.Sequential(
nn.Conv2d(in_channels, hiddens[0], kernel_size=1),
relu_func,
nn.Conv2d(hiddens[0], hiddens[0], kernel_size=3, padding=(1,1), padding_mode='replicate'),
relu_func,
nn.Conv2d(hiddens[0], hiddens[0], kernel_size=3, padding=(1,1), padding_mode='replicate'),
relu_func,
nn.Conv2d(hiddens[0], hiddens[1], kernel_size=3, padding=(1,1), padding_mode='replicate'),
relu_func,
nn.Conv2d(hiddens[1], hiddens[1], kernel_size=3, padding=(1,1), padding_mode='replicate'),
#nn.BatchNorm2d(hiddens[1]),
)
cls_dim = (roi_size[0]//2)*(roi_size[1]//2)*hiddens[1]
self.cls_iou_linear = nn.Sequential(
relu_func,
nn.Linear(cls_dim, 1024),
relu_func,
)
self.cls_linear_logits = nn.Sequential(
nn.Linear(1024, 512),
relu_func,
nn.Linear(512, self.num_classes)
)
self.iou_linear_logits = nn.Sequential(
nn.Linear(1024, 512),
relu_func,
nn.Linear(512, 1),
nn.ReLU()
)
# mask
self.conv_mask = nn.Sequential(
relu_func,
nn.Conv2d(hiddens[1], hiddens[0], kernel_size=1, padding_mode='replicate'),
nn.UpsamplingBilinear2d(size=(2*roi_size[0], 2*roi_size[1])),
relu_func,
nn.Conv2d(hiddens[0], hiddens[0], kernel_size=3, padding=(1,1), padding_mode='replicate'),
relu_func,
nn.Conv2d(hiddens[0], hiddens[0], kernel_size=3, padding=(1,1), padding_mode='replicate'),
#nn.BatchNorm2d(hiddens[0]),
relu_func
)
self.mask_fcn_logits = nn.Conv2d(hiddens[0], 1, kernel_size=1)
def vis_debug_roi_align(self, full_feature, bbox, roi_out, scale=1.0):
'''
bbox: [bk, x0,y0,x1,y1], used to sort so to vis large roi first
'''
from matplotlib import pyplot as plt
roi = roi_out.cpu().detach().numpy()
full = full_feature.cpu().detach().numpy()
fig, ax = plt.subplots(4,2)
ax[0,0].imshow(full[0])
ax[0,1].imshow(full[1])
bbox_np = (bbox).int().cpu().detach().numpy()
bbox_np[:, 1:5] = bbox_np[:, 1:5]*scale
bbox_wd = bbox_np[:,3] - bbox_np[:,1]
idx = sorted(range(len(bbox_wd)), key=lambda i:-bbox_wd[i])
for i, k in enumerate(idx[:4]):
cand = bbox_np[k]
print(cand)
bk, x0, y0, x1, y1 = cand[0], int(cand[1]), int(cand[2]), int(cand[3]), int(cand[4])
ax[i+1,0].imshow(roi[k])
ax[i+1,1].imshow(full[bk][y0:y1+1, x0:x1+1])
plt.show()
import pdb; pdb.set_trace()
def forward(self, in_masks, net_fea, rois, vis_debug=False):
'''
@Param: in_masks -- real instance label prediction from proto-branch,
for SC-arch, size [bs, 1, ht, wd]
net_fea -- list of backbone network features, in size [bs, ch, ht', wd']
rois -- tensor of bboxes information, size [N, x], with, coords in in_masks
resolution. ::
for SC-arch, [bs_idx, x0, y0, x1, y1, integer_label, real_label],
@Out: a dict includes, 'cls' -- [N, num_class]
'iou' -- [N, 1]
'seg' -- [N, 1, h, w]
'''
bs, ch, ht, wd = in_masks.size()
roi_bboxes = rois[:, :5]
# features
with torch.no_grad():
mask_feas = self.RoI_extractor_mask(roi_bboxes, [in_masks], fea_scales=[1.0])[0]
mask_feas = torch.abs(mask_feas - rois[:,-1][:, None, None, None])
mask_feas = torch.clamp(self.pi_margin - mask_feas, min=0)
# debug rois
if vis_debug:
labelImgs = in_masks[:,0] if ch==1 else in_masks.argmax(axis=1)
self.vis_debug_roi_align(labelImgs, roi_bboxes, mask_feas[:,0], scale=1.0)
if isinstance(net_fea, list):
fea_scales = [ele.size(2)/in_masks.size(2) for ele in net_fea]
backbone_feas = self.RoI_extractor_net(roi_bboxes, net_fea, fea_scales=fea_scales)
else:
fea_scales = [net_fea.size(2)/in_masks.size(2)]
backbone_feas = self.RoI_extractor_net(roi_bboxes, [net_fea], fea_scales=fea_scales)
# network
feature = torch.cat(backbone_feas + [mask_feas], dim=1)
fea_0 = self.conv_0(feature)
cls_iou_fea = nn.MaxPool2d(2, stride=2)(fea_0)
cls_iou_fea = self.cls_iou_linear(cls_iou_fea.view(fea_0.size(0), -1))
cls_logits = self.cls_linear_logits(cls_iou_fea)
iou_logits = self.iou_linear_logits(cls_iou_fea)
mask_layer = self.conv_mask(fea_0)
mask_logits = self.mask_fcn_logits(mask_layer)
return {'cls': cls_logits,
'iou': iou_logits,
'mask':mask_logits}