-
Notifications
You must be signed in to change notification settings - Fork 0
/
model.py
142 lines (119 loc) · 5.39 KB
/
model.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
import os
import torch
import torch.nn as nn
import torchvision.models as models
os.environ['TORCH_HOME'] = '../code/'
num_features = 128
class FeatureExtractor(nn.Module):
def __init__(self):
super(FeatureExtractor, self).__init__()
vgg19_model = models.vgg19(pretrained=True)
self.vgg19_54 = nn.Sequential(*list(vgg19_model.features.children())[:35])
def forward(self, img):
return self.vgg19_54(img)
################################################################################
# Discriminator Model
# ###############################################################################
class Discriminator(nn.Module):
def __init__(self, input_shape):
super(Discriminator, self).__init__()
self.input_shape = input_shape
in_channels, in_height, in_width = self.input_shape
patch_h, patch_w = int(in_height / 2 ** 4), int(in_width / 2 ** 4)
self.output_shape = (1, patch_h, patch_w)
def discriminator_block(in_filters, out_filters, first_block=False):
layers = []
layers.append(nn.Conv2d(in_filters, out_filters, kernel_size=3, stride=1, padding=1))
if not first_block:
layers.append(nn.BatchNorm2d(out_filters))
layers.append(nn.LeakyReLU(0.2, inplace=True))
layers.append(nn.Conv2d(out_filters, out_filters, kernel_size=3, stride=2, padding=1))
layers.append(nn.BatchNorm2d(out_filters))
layers.append(nn.LeakyReLU(0.2, inplace=True))
return layers
layers = []
in_filters = in_channels
for i, out_filters in enumerate([num_features, num_features*2, num_features*4, num_features*8]):
layers.extend(discriminator_block(in_filters, out_filters, first_block=(i == 0)))
in_filters = out_filters
layers.append(nn.Conv2d(out_filters, 1, kernel_size=3, stride=1, padding=1))
self.model = nn.Sequential(*layers)
def forward(self, img):
return self.model(img)
################################################################################
# Residual blocks for Generator
# ###############################################################################
class DenseResidualBlock(nn.Module):
"""
The core module of paper: (Residual Dense Network for Image Super-Resolution, CVPR 18)
"""
def __init__(self, filters, res_scale=0.2):
super(DenseResidualBlock, self).__init__()
self.res_scale = res_scale
def block(in_features, non_linearity=True):
layers = [nn.Conv2d(in_features, filters, 3, 1, 1, bias=True)]
if non_linearity:
layers += [nn.LeakyReLU()]
return nn.Sequential(*layers)
self.b1 = block(in_features=1 * filters)
self.b2 = block(in_features=2 * filters)
self.b3 = block(in_features=3 * filters)
self.b4 = block(in_features=4 * filters)
self.b5 = block(in_features=5 * filters, non_linearity=False)
self.blocks = [self.b1, self.b2, self.b3, self.b4, self.b5]
def forward(self, x):
inputs = x
for block in self.blocks:
out = block(inputs)
inputs = torch.cat([inputs, out], 1)
return out.mul(self.res_scale) + x
class ResidualInResidualDenseBlock(nn.Module):
def __init__(self, filters, res_scale=0.2):
super(ResidualInResidualDenseBlock, self).__init__()
self.res_scale = res_scale
self.dense_blocks = nn.Sequential(
DenseResidualBlock(filters), DenseResidualBlock(filters), DenseResidualBlock(filters)
)
def forward(self, x):
res_x = self.dense_blocks(x).mul(self.res_scale)
res_x += x
return res_x
################################################################################
# Generator Model
# ###############################################################################
class Generator(nn.Module):
def __init__(self, channels, filters=64, num_res_blocks=16, num_upsample=2):
super(Generator, self).__init__()
# First layer
self.conv1 = nn.Sequential(nn.ReflectionPad2d(1),
nn.Conv2d(channels, filters, kernel_size=3, stride=1))
# Residual blocks
self.res_blocks = nn.Sequential(*[ResidualInResidualDenseBlock(filters) for _ in range(num_res_blocks)])
# Second conv layer post residual blocks
self.conv2 = nn.Sequential(nn.ReflectionPad2d(1),
nn.Conv2d(filters, filters, kernel_size=3, stride=1))
# Upsampling layers
upsample_layers = []
for _ in range(num_upsample):
upsample_layers += [
nn.Conv2d(filters, filters * 4, kernel_size=3, stride=1, padding=1),
nn.LeakyReLU(),
nn.PixelShuffle(upscale_factor=2),
]
self.upsampling = nn.Sequential(*upsample_layers)
# Final output block
self.conv3 = nn.Sequential(
nn.ReflectionPad2d(1),
nn.Conv2d(filters, filters, kernel_size=3, stride=1),
nn.LeakyReLU(),
nn.ReflectionPad2d(1),
nn.Conv2d(filters, channels, kernel_size=3, stride=1)
)
def forward(self, x):
out1 = self.conv1(x)
out = self.res_blocks(out1)
out2 = self.conv2(out)
out = torch.add(out1, out2)
out = self.upsampling(out)
out = self.conv3(out)
return out