forked from jhj0517/Whisper-WebUI
-
Notifications
You must be signed in to change notification settings - Fork 0
/
app.py
139 lines (122 loc) Β· 7.1 KB
/
app.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
import gradio as gr
from modules.whisper_Inference import WhisperInference
from modules.nllb_inference import NLLBInference
import os
from ui.htmls import *
from modules.youtube_manager import get_ytmetas
import argparse
# Create the parser
parser = argparse.ArgumentParser()
parser.add_argument('--share', type=bool, default=False, nargs='?', const=True,
help='Share value')
args = parser.parse_args()
def open_folder(folder_path):
if os.path.exists(folder_path):
os.system(f"start {folder_path}")
else:
print(f"The folder {folder_path} does not exist.")
def on_change_models(model_size):
translatable_model = ["large", "large-v1", "large-v2"]
if model_size not in translatable_model:
return gr.Checkbox.update(visible=False, value=False, interactive=False)
else:
return gr.Checkbox.update(visible=True, value=False, label="Translate to English?", interactive=True)
whisper_inf = WhisperInference()
nllb_inf = NLLBInference()
block = gr.Blocks(css=CSS).queue(api_open=False)
with block:
with gr.Row():
with gr.Column():
gr.Markdown(MARKDOWN, elem_id="md_project")
with gr.Tabs():
with gr.TabItem("File"): # tab1
with gr.Row():
input_file = gr.Files(type="file", label="Upload File here")
with gr.Row():
dd_model = gr.Dropdown(choices=whisper_inf.available_models, value="large-v2", label="Model")
dd_lang = gr.Dropdown(choices=["Automatic Detection"] + whisper_inf.available_langs,
value="Automatic Detection", label="Language")
dd_subformat = gr.Dropdown(["SRT", "WebVTT"], value="SRT", label="Subtitle Format")
with gr.Row():
cb_translate = gr.Checkbox(value=False, label="Translate to English?", interactive=True)
with gr.Row():
btn_run = gr.Button("GENERATE SUBTITLE FILE", variant="primary")
with gr.Row():
tb_indicator = gr.Textbox(label="Output", scale=8)
btn_openfolder = gr.Button('π', scale=2)
btn_run.click(fn=whisper_inf.transcribe_file,
inputs=[input_file, dd_model, dd_lang, dd_subformat, cb_translate], outputs=[tb_indicator])
btn_openfolder.click(fn=lambda: open_folder("outputs"), inputs=None, outputs=None)
dd_model.change(fn=on_change_models, inputs=[dd_model], outputs=[cb_translate])
with gr.TabItem("Youtube"): # tab2
with gr.Row():
tb_youtubelink = gr.Textbox(label="Youtube Link")
with gr.Row(equal_height=True):
with gr.Column():
img_thumbnail = gr.Image(label="Youtube Thumbnail")
with gr.Column():
tb_title = gr.Label(label="Youtube Title")
tb_description = gr.Textbox(label="Youtube Description", max_lines=15)
with gr.Row():
dd_model = gr.Dropdown(choices=whisper_inf.available_models, value="large-v2", label="Model")
dd_lang = gr.Dropdown(choices=["Automatic Detection"] + whisper_inf.available_langs,
value="Automatic Detection", label="Language")
dd_subformat = gr.Dropdown(choices=["SRT", "WebVTT"], value="SRT", label="Subtitle Format")
with gr.Row():
cb_translate = gr.Checkbox(value=False, label="Translate to English?", interactive=True)
with gr.Row():
btn_run = gr.Button("GENERATE SUBTITLE FILE", variant="primary")
with gr.Row():
tb_indicator = gr.Textbox(label="Output", scale=8)
btn_openfolder = gr.Button('π', scale=2)
btn_run.click(fn=whisper_inf.transcribe_youtube,
inputs=[tb_youtubelink, dd_model, dd_lang, dd_subformat, cb_translate],
outputs=[tb_indicator])
tb_youtubelink.change(get_ytmetas, inputs=[tb_youtubelink],
outputs=[img_thumbnail, tb_title, tb_description])
btn_openfolder.click(fn=lambda: open_folder("outputs"), inputs=None, outputs=None)
dd_model.change(fn=on_change_models, inputs=[dd_model], outputs=[cb_translate])
with gr.TabItem("Mic"): # tab3
with gr.Row():
mic_input = gr.Microphone(label="Record with Mic", type="filepath", interactive=True)
with gr.Row():
dd_model = gr.Dropdown(choices=whisper_inf.available_models, value="large-v2", label="Model")
dd_lang = gr.Dropdown(choices=["Automatic Detection"] + whisper_inf.available_langs,
value="Automatic Detection", label="Language")
dd_subformat = gr.Dropdown(["SRT", "WebVTT"], value="SRT", label="Subtitle Format")
with gr.Row():
cb_translate = gr.Checkbox(value=False, label="Translate to English?", interactive=True)
with gr.Row():
btn_run = gr.Button("GENERATE SUBTITLE FILE", variant="primary")
with gr.Row():
tb_indicator = gr.Textbox(label="Output", scale=8)
btn_openfolder = gr.Button('π', scale=2)
btn_run.click(fn=whisper_inf.transcribe_mic,
inputs=[mic_input, dd_model, dd_lang, dd_subformat, cb_translate], outputs=[tb_indicator])
btn_openfolder.click(fn=lambda: open_folder("outputs"), inputs=None, outputs=None)
dd_model.change(fn=on_change_models, inputs=[dd_model], outputs=[cb_translate])
with gr.TabItem("T2T Translation"): # tab 4
with gr.Row():
file_subs = gr.Files(type="file", label="Upload Subtitle Files to translate here",
file_types=['.vtt', '.srt'])
with gr.TabItem("NLLB"): # sub tab1
with gr.Row():
dd_nllb_model = gr.Dropdown(label="Model", value=nllb_inf.default_model_size,
choices=nllb_inf.available_models)
dd_nllb_sourcelang = gr.Dropdown(label="Source Language", choices=nllb_inf.available_source_langs)
dd_nllb_targetlang = gr.Dropdown(label="Target Language", choices=nllb_inf.available_target_langs)
with gr.Row():
btn_run = gr.Button("TRANSLATE SUBTITLE FILE", variant="primary")
with gr.Row():
tb_indicator = gr.Textbox(label="Output", scale=8)
btn_openfolder = gr.Button('π', scale=2)
with gr.Column():
md_vram_table = gr.HTML(NLLB_VRAM_TABLE, elem_id="md_nllb_vram_table")
btn_run.click(fn=nllb_inf.translate_file,
inputs=[file_subs, dd_nllb_model, dd_nllb_sourcelang, dd_nllb_targetlang],
outputs=[tb_indicator])
btn_openfolder.click(fn=lambda: open_folder(os.path.join("outputs", "translations")), inputs=None, outputs=None)
if args.share:
block.launch(share=True)
else:
block.launch()