-
Notifications
You must be signed in to change notification settings - Fork 26
/
esl_exponential.c
678 lines (586 loc) · 20.7 KB
/
esl_exponential.c
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539
540
541
542
543
544
545
546
547
548
549
550
551
552
553
554
555
556
557
558
559
560
561
562
563
564
565
566
567
568
569
570
571
572
573
574
575
576
577
578
579
580
581
582
583
584
585
586
587
588
589
590
591
592
593
594
595
596
597
598
599
600
601
602
603
604
605
606
607
608
609
610
611
612
613
614
615
616
617
618
619
620
621
622
623
624
625
626
627
628
629
630
631
632
633
634
635
636
637
638
639
640
641
642
643
644
645
646
647
648
649
650
651
652
653
654
655
656
657
658
659
660
661
662
663
664
665
666
667
668
669
670
671
672
673
674
675
676
677
/* Statistical routines for exponential distributions.
*
* Contents:
* 1. Routines for evaluating densities and distributions
* 2. Generic API routines: for general interface w/ histogram module
* 3. Routines for dumping plots for files
* 4. Routines for sampling
* 5. Maximum likelihood fitting
* 6. Stats driver
* 7. Unit tests
* 8. Test driver
* 9. Example
*
* xref STL9/138
*
* To do:
* - Fit*() functions should return eslEINVAL on n=0, eslENORESULT
* on failure due to small n. Compare esl_gumbel. xref J12/93.
* SRE, Wed Nov 27 11:03:07 2013
*/
#include <esl_config.h>
#include <stdio.h>
#include <math.h>
#include "easel.h"
#include "esl_histogram.h"
#include "esl_random.h"
#include "esl_stats.h"
#include "esl_exponential.h"
/****************************************************************************
* 1. Routines for evaluating densities and distributions
****************************************************************************/
/* lambda > 0
* mu <= x < infinity
*
* watch out:
* - any lambda > 0 is valid... including infinity. Fitting code
* may try to test such lambdas, and it must get back valid numbers,
* never an NaN, or it will fail. IEEE754 allows us
* to calculate log(inf) = inf, exp(-inf) = 0, and exp(inf) = inf.
* But inf-inf = NaN, so Don't Do That.
*/
/* Function: esl_exp_pdf()
*
* Purpose: Calculates the probability density function for the
* exponential, $P(X=x)$, given value <x>, offset <mu>,
* and decay parameter <lambda>.
*/
double
esl_exp_pdf(double x, double mu, double lambda)
{
if (x < mu) return 0.;
return (lambda * exp(-lambda*(x-mu)));
}
/* Function: esl_exp_logpdf()
*
* Purpose: Calculates the log probability density function for the
* exponential, $P(X=x)$, given value <x>, offset <mu>,
* and decay parameter <lambda>.
*/
double
esl_exp_logpdf(double x, double mu, double lambda)
{
if (x < mu) return -eslINFINITY;
if (lambda == eslINFINITY)
{ /* limit as lambda->inf: avoid inf-inf! */
if (x == mu) return eslINFINITY;
else return -eslINFINITY;
}
return (log(lambda) - lambda*(x-mu));
}
/* Function: esl_exp_cdf()
*
* Purpose: Calculates the cumulative distribution function for the
* exponential, $P(X \leq x)$, given value <x>, offset <mu>,
* and decay parameter <lambda>.
*/
double
esl_exp_cdf(double x, double mu, double lambda)
{
double y = lambda*(x-mu); /* y>=0 because lambda>0 and x>=mu */
if (x < mu) return 0.;
/* 1-e^-y ~ y for small |y| */
if (y < eslSMALLX1) return y;
else return 1 - exp(-y);
}
/* Function: esl_exp_logcdf()
*
* Purpose: Calculates the log of the cumulative distribution function
* for the exponential, $log P(X \leq x)$, given value <x>,
* offset <mu>, and decay parameter <lambda>.
*/
double
esl_exp_logcdf(double x, double mu, double lambda)
{
double y = lambda * (x-mu);
double ey = exp(-y);
if (x < mu) return -eslINFINITY;
/* When y is small, 1-e^-y = y, so answer is log(y);
* when y is large, exp(-y) is small, log(1-exp(-y)) = -exp(-y).
*/
if (y == 0) return -eslINFINITY; /* don't allow NaN */
else if (y < eslSMALLX1) return log(y);
else if (ey < eslSMALLX1) return -ey;
else return log(1-ey);
}
/* Function: esl_exp_surv()
*
* Purpose: Calculates the survivor function, $P(X>x)$ (that is, 1-CDF,
* the right tail probability mass) for an exponential distribution,
* given value <x>, offset <mu>, and decay parameter <lambda>.
*/
double
esl_exp_surv(double x, double mu, double lambda)
{
if (x < mu) return 1.0;
return exp(-lambda * (x-mu));
}
/* Function: esl_exp_logsurv()
*
* Purpose: Calculates the log survivor function, $\log P(X>x)$ (that is,
* log(1-CDF), the log of the right tail probability mass) for an
* exponential distribution, given value <x>, offset <mu>, and
* decay parameter <lambda>.
*/
double
esl_exp_logsurv(double x, double mu, double lambda)
{
if (x < mu) return 0.0;
return -lambda * (x-mu);
}
/* Function: esl_exp_invcdf()
*
* Purpose: Calculates the inverse of the CDF; given a <cdf> value
* $0 <= p < 1$, returns the value $x$ at which the CDF
* has that value.
*/
double
esl_exp_invcdf(double p, double mu, double lambda)
{
return mu - 1/lambda * log(1. - p);
}
/* Function: esl_exp_invsurv()
*
* Purpose: Calculates the inverse of the survivor function, the score
* at which the right tail's mass is $0 <= p < 1$, for an
* exponential function with parameters <mu> and <lambda>.
*/
double
esl_exp_invsurv(double p, double mu, double lambda)
{
return mu - 1./lambda * log(p);
}
/*------------------ end of densities and distributions --------------------*/
/*------------------ end of densities and distributions --------------------*/
/*****************************************************************
* 2. Generic API routines: for general interface w/ histogram module
*****************************************************************/
/* Function: esl_exp_generic_pdf()
*
* Purpose: Generic-API version of PDF.
*/
double
esl_exp_generic_pdf(double x, void *params)
{
double *p = (double *) params;
return esl_exp_pdf(x, p[0], p[1]);
}
/* Function: esl_exp_generic_cdf()
*
* Purpose: Generic-API version of CDF.
*/
double
esl_exp_generic_cdf(double x, void *params)
{
double *p = (double *) params;
return esl_exp_cdf(x, p[0], p[1]);
}
/* Function: esl_exp_generic_surv()
*
* Purpose: Generic-API version of survival function.
*/
double
esl_exp_generic_surv(double x, void *params)
{
double *p = (double *) params;
return esl_exp_surv(x, p[0], p[1]);
}
/* Function: esl_exp_generic_invcdf()
*
* Purpose: Generic-API version of inverse CDF.
*/
double
esl_exp_generic_invcdf(double p, void *params)
{
double *v = (double *) params;
return esl_exp_invcdf(p, v[0], v[1]);
}
/*------------------------- end of generic API --------------------------*/
/****************************************************************************
* 3. Routines for dumping plots for files
****************************************************************************/
/* Function: esl_exp_Plot()
*
* Purpose: Plot some exponential function <func> (for instance,
* <esl_exp_pdf()>) for parameters <mu> and <lambda>, for
* a range of values x from <xmin> to <xmax> in steps of <xstep>;
* output to an open stream <fp> in xmgrace XY input format.
*
* Returns: <eslOK> on success.
*
* Throws: <eslEWRITE> on any system write error, such as a filled disk.
*/
int
esl_exp_Plot(FILE *fp, double mu, double lambda,
double (*func)(double x, double mu, double lambda),
double xmin, double xmax, double xstep)
{
double x;
for (x = xmin; x <= xmax; x += xstep)
if (fprintf(fp, "%f\t%g\n", x, (*func)(x, mu, lambda)) < 0) ESL_EXCEPTION_SYS(eslEWRITE, "exponential plot write failed");
if (fprintf(fp, "&\n") < 0) ESL_EXCEPTION_SYS(eslEWRITE, "exponential plot write failed");
return eslOK;
}
/*-------------------- end plot dumping routines ---------------------------*/
/****************************************************************************
* 4. Routines for sampling
****************************************************************************/
/* Function: esl_exp_Sample()
*
* Purpose: Sample an exponential random variate
* by the transformation method, given offset <mu>
* and decay parameter <lambda>.
*/
double
esl_exp_Sample(ESL_RANDOMNESS *r, double mu, double lambda)
{
double p, x;
p = esl_rnd_UniformPositive(r);
x = mu - 1./lambda * log(p); // really log(1-p), but if p uniform on 0..1
// then so is 1-p.
return x;
}
/*--------------------------- end sampling ---------------------------------*/
/****************************************************************************
* 5. Maximum likelihood fitting
****************************************************************************/
/* Function: esl_exp_FitComplete()
*
* Purpose: Given an array of <n> samples <x[0]..x[n-1]>, fit
* them to an exponential distribution.
* Return maximum likelihood parameters <ret_mu> and <ret_lambda>.
*
* Args: x - complete exponentially-distributed data [0..n-1]
* n - number of samples in <x> (n>0)
* ret_mu - lower bound of the distribution (all x_i >= mu)
* ret_lambda - RETURN: maximum likelihood estimate of lambda
*
* Returns: <eslOK> on success.
*
* Throws: <eslEINVAL> if n=0 (no data).
*
* Xref: STL9/138.
*/
int
esl_exp_FitComplete(double *x, int n, double *ret_mu, double *ret_lambda)
{
double mu, mean;
int i;
int status;
if (!n) ESL_XEXCEPTION(eslEINVAL, "empty data vector provided for exponential fit");
/* ML mu is the lowest score. mu=x is ok in the exponential. */
mu = x[0];
for (i = 1; i < n; i++) if (x[i] < mu) mu = x[i];
mean = 0.;
for (i = 0; i < n; i++) mean += x[i] - mu;
mean /= (double) n;
*ret_mu = mu;
*ret_lambda = 1./mean; /* ML estimate trivial & analytic */
return eslOK;
ERROR:
*ret_mu = 0.0;
*ret_lambda = 0.0;
return status;
}
/* Function: esl_exp_FitCompleteScale()
*
* Purpose: Given an array of <n> samples <x[0]..x[n-1]>, fit
* them to an exponential distribution of known location
* parameter <mu>. Return maximum likelihood scale
* parameter <ret_lambda>.
*
* All $x_i \geq \mu$.
*
* Args: x - complete exponentially-distributed data [0..n-1]
* n - number of samples in <x>
* mu - lower bound of the distribution (all x_i >= mu)
* ret_lambda - RETURN: maximum likelihood estimate of lambda
*
* Returns: <eslOK> on success.
*
* Xref: J1/49.
*/
int
esl_exp_FitCompleteScale(double *x, int n, double mu, double *ret_lambda)
{
double mean;
int i;
mean = 0.;
for (i = 0; i < n; i++) mean += x[i] - mu;
mean /= (double) n;
*ret_lambda = 1./mean; /* ML estimate trivial & analytic */
return eslOK;
}
/* Function: esl_exp_FitCompleteBinned()
*
* Purpose: Fit a complete exponential distribution to the observed
* binned data in a histogram <g>, where each
* bin i holds some number of observed samples x with values from
* lower bound l to upper bound u (that is, $l < x \leq u$);
* find maximum likelihood parameters $\mu,\lambda$ and
* return them in <*ret_mu>, <*ret_lambda>.
*
* If the binned data in <g> were set to focus on
* a tail by virtual censoring, the "complete" exponential is
* fitted to this tail. The caller then also needs to
* remember what fraction of the probability mass was in this
* tail.
*
* The ML estimate for $mu$ is the smallest observed
* sample. For complete data, <ret_mu> is generally set to
* the smallest observed sample value, except in the
* special case of a "rounded" complete dataset, where
* <ret_mu> is set to the lower bound of the smallest
* occupied bin. For tails, <ret_mu> is set to the cutoff
* threshold <phi>, where we are guaranteed that <phi> is
* at the lower bound of a bin (by how the histogram
* object sets tails).
*
* The ML estimate for <ret_lambda> has an analytical
* solution, so this routine is fast.
*
* If all the data are in one bin, the ML estimate of
* $\lambda$ will be $\infty$. This is mathematically correct,
* but is probably a situation the caller wants to avoid, perhaps
* by choosing smaller bins.
*
* This function currently cannot fit an exponential tail
* to truly censored, binned data, because it assumes that
* all bins have equal width, but in true censored data, the
* lower cutoff <phi> may fall anywhere in the first bin.
*
* Returns: <eslOK> on success.
*
* Throws: <eslEINVAL> if dataset is true-censored.
*/
int
esl_exp_FitCompleteBinned(ESL_HISTOGRAM *g, double *ret_mu, double *ret_lambda)
{
int i;
double ai, bi, delta;
double sa, sb;
double mu = 0.;
if (g->dataset_is == COMPLETE)
{
if (g->is_rounded) mu = esl_histogram_Bin2LBound(g, g->imin);
else mu = g->xmin;
}
else if (g->dataset_is == VIRTUAL_CENSORED) /* i.e., we'll fit to tail */
mu = g->phi;
else if (g->dataset_is == TRUE_CENSORED)
ESL_EXCEPTION(eslEINVAL, "can't fit true censored dataset");
delta = g->w;
sa = sb = 0.;
for (i = g->cmin; i <= g->imax; i++) /* for each occupied bin */
{
if (g->obs[i] == 0) continue;
ai = esl_histogram_Bin2LBound(g,i);
bi = esl_histogram_Bin2UBound(g,i);
sa += g->obs[i] * (ai-mu);
sb += g->obs[i] * (bi-mu);
}
*ret_mu = mu;
*ret_lambda = 1/delta * (log(sb) - log(sa));
return eslOK;
}
/****************************************************************************
* 6. Stats driver
****************************************************************************/
#ifdef eslEXPONENTIAL_STATS
/* Compiles statistics on the accuracy of ML estimation of an exponential tail.
* compile: gcc -g -O2 -Wall -I. -L. -o stats -DeslEXPONENTIAL_STATS esl_exponential.c -leasel -lm
* run: ./stats > stats.out
*
* Output is, for each trial:
* <trial #> <fitted mu> <fitted lambda>
*
* To get mean, stddev of lambda estimates:
* % ./stats | avg -f2
*/
#include <stdio.h>
#include "easel.h"
#include "esl_getopts.h"
#include "esl_random.h"
#include "esl_exponential.h"
int
main(int argc, char **argv)
{
ESL_RANDOMNESS *r = esl_randomness_Create(0);
int ntrials; /* number of estimates to gather */
int N; /* number of samples collected to make each estimate */
double mu, lambda; /* parametric location, scale */
double est_mu, est_lambda; /* estimated location, scale */
int trial;
int i;
double *x;
/* Configuration: (change & recompile as needed)
*/
ntrials = 1000;
mu = 0.;
lambda = 0.693;
N = 95;
x = malloc(sizeof(double) *N);
for (trial = 0; trial < ntrials; trial++)
{
for (i = 0; i < N; i++)
x[i] = esl_exp_Sample(r, mu, lambda);
esl_exp_FitComplete(x, N, &est_mu, &est_lambda);
/*
est_mu = mu;
esl_exp_FitCompleteScale(x, N, est_mu, &est_lambda);
*/
printf("%4d %8.4f %8.4f\n", i, est_mu, est_lambda);
}
free(x);
return 0;
}
#endif /*eslEXPONENTIAL_STATS*/
/****************************************************************************
* 7. Unit tests
****************************************************************************/
/****************************************************************************
* 8. Test driver
****************************************************************************/
#ifdef eslEXPONENTIAL_TESTDRIVE
/* Compile:
gcc -g -Wall -I. -L. -o test -DeslEXPONENTIAL_TESTDRIVE esl_exponential.c -leasel -lm
*/
#include <stdio.h>
#include <stdlib.h>
#include <string.h>
#include "easel.h"
#include "esl_random.h"
#include "esl_histogram.h"
#include "esl_exponential.h"
int
main(int argc, char **argv)
{
ESL_HISTOGRAM *h;
ESL_RANDOMNESS *r;
double mu = 10.0;
double lambda = 1.0;
int n = 10000;
double binwidth = 0.1;
double emu, elambda;
int i;
double x;
double *data;
int ndata;
int opti;
int be_verbose = FALSE;
char *plotfile = NULL;
FILE *pfp = stdout;
int plot_pdf = FALSE;
int plot_logpdf = FALSE;
int plot_cdf = FALSE;
int plot_logcdf = FALSE;
int plot_surv = FALSE;
int plot_logsurv = FALSE;
int xmin_set = FALSE;
double xmin;
int xmax_set = FALSE;
double xmax;
int xstep_set = FALSE;
double xstep;
for (opti = 1; opti < argc && *(argv[opti]) == '-'; opti++)
{
if (strcmp(argv[opti], "-m") == 0) mu = atof(argv[++opti]);
else if (strcmp(argv[opti], "-l") == 0) lambda = atof(argv[++opti]);
else if (strcmp(argv[opti], "-n") == 0) n = atoi(argv[++opti]);
else if (strcmp(argv[opti], "-o") == 0) plotfile = argv[++opti];
else if (strcmp(argv[opti], "-v") == 0) be_verbose = TRUE;
else if (strcmp(argv[opti], "-w") == 0) binwidth = atof(argv[++opti]);
else if (strcmp(argv[opti], "-C") == 0) plot_cdf = TRUE;
else if (strcmp(argv[opti], "-LC") == 0) plot_logcdf = TRUE;
else if (strcmp(argv[opti], "-P") == 0) plot_pdf = TRUE;
else if (strcmp(argv[opti], "-LP") == 0) plot_logpdf = TRUE;
else if (strcmp(argv[opti], "-S") == 0) plot_surv = TRUE;
else if (strcmp(argv[opti], "-LS") == 0) plot_logsurv = TRUE;
else if (strcmp(argv[opti], "-XL") == 0) { xmin_set = TRUE; xmin = atof(argv[++opti]); }
else if (strcmp(argv[opti], "-XH") == 0) { xmax_set = TRUE; xmax = atof(argv[++opti]); }
else if (strcmp(argv[opti], "-XS") == 0) { xstep_set = TRUE; xstep = atof(argv[++opti]); }
else esl_fatal("bad option");
}
if (be_verbose)
printf("Parametric: mu = %f lambda = %f\n", mu, lambda);
r = esl_randomness_Create(0);
h = esl_histogram_CreateFull(mu, 100., binwidth);
if (plotfile != NULL) {
if ((pfp = fopen(plotfile, "w")) == NULL) esl_fatal("Failed to open plotfile");
}
if (! xmin_set) xmin = mu;
if (! xmax_set) xmax = mu+20* (1./lambda);
if (! xstep_set) xstep = 0.1;
for (i = 0; i < n; i++)
{
x = esl_exp_Sample(r, mu, lambda);
esl_histogram_Add(h, x);
}
esl_histogram_GetData(h, &data, &ndata);
esl_exp_FitComplete(data, ndata, &emu, &elambda);
if (be_verbose) printf("Complete data fit: mu = %f lambda = %f\n", emu, elambda);
if (fabs( (emu-mu)/mu ) > 0.01) esl_fatal("Error in (complete) fitted mu > 1%\n");
if (fabs( (elambda-lambda)/lambda ) > 0.10) esl_fatal("Error in (complete) fitted lambda > 10%\n");
esl_exp_FitCompleteBinned(h, &emu, &elambda);
if (be_verbose) printf("Binned data fit: mu = %f lambda = %f\n", emu, elambda);
if (fabs( (emu-mu)/mu ) > 0.01) esl_fatal("Error in (binned) fitted mu > 1%\n");
if (fabs( (elambda-lambda)/lambda ) > 0.10) esl_fatal("Error in (binned) fitted lambda > 10%\n");
if (plot_pdf) esl_exp_Plot(pfp, mu, lambda, &esl_exp_pdf, xmin, xmax, xstep);
if (plot_logpdf) esl_exp_Plot(pfp, mu, lambda, &esl_exp_logpdf, xmin, xmax, xstep);
if (plot_cdf) esl_exp_Plot(pfp, mu, lambda, &esl_exp_cdf, xmin, xmax, xstep);
if (plot_logcdf) esl_exp_Plot(pfp, mu, lambda, &esl_exp_logcdf, xmin, xmax, xstep);
if (plot_surv) esl_exp_Plot(pfp, mu, lambda, &esl_exp_surv, xmin, xmax, xstep);
if (plot_logsurv) esl_exp_Plot(pfp, mu, lambda, &esl_exp_logsurv, xmin, xmax, xstep);
if (plotfile != NULL) fclose(pfp);
esl_randomness_Destroy(r);
esl_histogram_Destroy(h);
return 0;
}
#endif /*eslEXPONENTIAL_TESTDRIVE*/
/****************************************************************************
* 9. Example
****************************************************************************/
#ifdef eslEXPONENTIAL_EXAMPLE
/*::cexcerpt::exp_example::begin::*/
#include <stdio.h>
#include "easel.h"
#include "esl_random.h"
#include "esl_histogram.h"
#include "esl_exponential.h"
int
main(int argc, char **argv)
{
double mu = -50.0;
double lambda = 0.5;
ESL_RANDOMNESS *r = esl_randomness_Create(0);
ESL_HISTOGRAM *h = esl_histogram_CreateFull(mu, 100., 0.1);
int n = 10000;
double emu, elambda;
int i;
double x;
double *data;
int ndata;
for (i = 0; i < n; i++)
{
x = esl_exp_Sample(r, mu, lambda);
esl_histogram_Add(h, x);
}
esl_histogram_GetData(h, &data, &ndata);
/* Plot the empirical (sampled) and expected survivals */
esl_histogram_PlotSurvival(stdout, h);
esl_exp_Plot(stdout, mu, lambda,
&esl_exp_surv, h->xmin, h->xmax, 0.1);
/* ML fit to complete data, and plot fitted survival curve */
esl_exp_FitComplete(data, ndata, &emu, &elambda);
esl_exp_Plot(stdout, emu, elambda,
&esl_exp_surv, h->xmin, h->xmax, 0.1);
/* ML fit to binned data, plot fitted survival curve */
esl_exp_FitCompleteBinned(h, &emu, &elambda);
esl_exp_Plot(stdout, emu, elambda,
&esl_exp_surv, h->xmin, h->xmax, 0.1);
esl_randomness_Destroy(r);
esl_histogram_Destroy(h);
return 0;
}
/*::cexcerpt::exp_example::end::*/
#endif /*eslEXPONENTIAL_EXAMPLE*/