This repository is the official implementation of End-to-End Meta-Bayesian Optimisation with Transformer Neural Processes. The code provided in this repo allows the user to train, validate and test NAP on `HPO-B and Antigen experiments.
Setup a virtualenv/conda/miniconda environment with at least python3.8 and use the requirements.txt to install the dependencies.
# Example with virtualenv
sudo apt-get install python3.8-venv # for Ubuntu 18.04 LTS
python3.8 -m venv nap_env
. nap_env/bin/activate
pip install --upgrade pip
pip install -r requirements.txt
To train NAP on HPO:
PYTHONPATH=. python scripts/nap/train_nap_hpo.py
# if it complains about the number of opened files, first run
ulimit -Sn 10000
Adjust the paths inside scripts/nap/test_nap_hpo.py
and run the script.
PYTHONPATH=. python scripts/nap/test_nap_hpo.py
@misc{maraval2023endtoend,
title={End-to-End Meta-Bayesian Optimisation with Transformer Neural Processes},
author={Alexandre Maraval and Matthieu Zimmer and Antoine Grosnit and Haitham Bou Ammar},
year={2023},
eprint={2305.15930},
archivePrefix={arXiv},
primaryClass={cs.LG}
}
Alexandre Max Maraval, Matthieu Zimmer, Antoine Grosnit, Haitham Bou Ammar
- https://github.com/metabo-iclr2020/MetaBO is under GNU APGL-3.0 License.