-
Notifications
You must be signed in to change notification settings - Fork 0
/
método de bisección_cosx=x.nb
1016 lines (906 loc) · 31.9 KB
/
método de bisección_cosx=x.nb
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539
540
541
542
543
544
545
546
547
548
549
550
551
552
553
554
555
556
557
558
559
560
561
562
563
564
565
566
567
568
569
570
571
572
573
574
575
576
577
578
579
580
581
582
583
584
585
586
587
588
589
590
591
592
593
594
595
596
597
598
599
600
601
602
603
604
605
606
607
608
609
610
611
612
613
614
615
616
617
618
619
620
621
622
623
624
625
626
627
628
629
630
631
632
633
634
635
636
637
638
639
640
641
642
643
644
645
646
647
648
649
650
651
652
653
654
655
656
657
658
659
660
661
662
663
664
665
666
667
668
669
670
671
672
673
674
675
676
677
678
679
680
681
682
683
684
685
686
687
688
689
690
691
692
693
694
695
696
697
698
699
700
701
702
703
704
705
706
707
708
709
710
711
712
713
714
715
716
717
718
719
720
721
722
723
724
725
726
727
728
729
730
731
732
733
734
735
736
737
738
739
740
741
742
743
744
745
746
747
748
749
750
751
752
753
754
755
756
757
758
759
760
761
762
763
764
765
766
767
768
769
770
771
772
773
774
775
776
777
778
779
780
781
782
783
784
785
786
787
788
789
790
791
792
793
794
795
796
797
798
799
800
801
802
803
804
805
806
807
808
809
810
811
812
813
814
815
816
817
818
819
820
821
822
823
824
825
826
827
828
829
830
831
832
833
834
835
836
837
838
839
840
841
842
843
844
845
846
847
848
849
850
851
852
853
854
855
856
857
858
859
860
861
862
863
864
865
866
867
868
869
870
871
872
873
874
875
876
877
878
879
880
881
882
883
884
885
886
887
888
889
890
891
892
893
894
895
896
897
898
899
900
901
902
903
904
905
906
907
908
909
910
911
912
913
914
915
916
917
918
919
920
921
922
923
924
925
926
927
928
929
930
931
932
933
934
935
936
937
938
939
940
941
942
943
944
945
946
947
948
949
950
951
952
953
954
955
956
957
958
959
960
961
962
963
964
965
966
967
968
969
970
971
972
973
974
975
976
977
978
979
980
981
982
983
984
985
986
987
988
989
990
991
992
993
994
995
996
997
998
999
1000
(* Content-type: application/vnd.wolfram.mathematica *)
(*** Wolfram Notebook File ***)
(* http://www.wolfram.com/nb *)
(* CreatedBy='Mathematica 10.0' *)
(*CacheID: 234*)
(* Internal cache information:
NotebookFileLineBreakTest
NotebookFileLineBreakTest
NotebookDataPosition[ 158, 7]
NotebookDataLength[ 32430, 1007]
NotebookOptionsPosition[ 28285, 854]
NotebookOutlinePosition[ 28657, 870]
CellTagsIndexPosition[ 28614, 867]
WindowFrame->Normal*)
(* Beginning of Notebook Content *)
Notebook[{
Cell[CellGroupData[{
Cell[BoxData[{
RowBox[{
RowBox[{"f", "[", "x_", "]"}], ":=",
RowBox[{
RowBox[{"Cos", "[", "x", "]"}], "-", "x"}]}], "\[IndentingNewLine]",
RowBox[{"f", "[",
FractionBox[
RowBox[{"3", "\[Pi]"}], "16"], "]"}]}], "Input",
CellChangeTimes->{{3.680807347578868*^9, 3.6808073551543016`*^9}, {
3.680807411824543*^9, 3.6808074972084265`*^9}, {3.680811558045693*^9,
3.680811558998748*^9}}],
Cell[BoxData[
RowBox[{
RowBox[{"-",
FractionBox[
RowBox[{"3", " ", "\[Pi]"}], "16"]}], "+",
RowBox[{"Cos", "[",
FractionBox[
RowBox[{"3", " ", "\[Pi]"}], "16"], "]"}]}]], "Output",
CellChangeTimes->{3.6808075704636164`*^9, 3.680811560017806*^9}]
}, Open ]],
Cell[CellGroupData[{
Cell[BoxData[
RowBox[{"Plot", "[",
RowBox[{
RowBox[{"f", "[", "x", "]"}], ",",
RowBox[{"{",
RowBox[{"x", ",",
RowBox[{"-", "5"}], ",", "5"}], "}"}]}], "]"}]], "Input",
CellChangeTimes->{{3.6808115823640842`*^9, 3.6808115975329514`*^9}}],
Cell[BoxData[
GraphicsBox[{{}, {},
{RGBColor[0.368417, 0.506779, 0.709798], AbsoluteThickness[1.6], Opacity[
1.], LineBox[CompressedData["
1:eJwt2nk4lN/bAPCx78w8gygpSomSShRyjhaUNYVEVJYWKqEIISlavqIsJUmo
LCUiIjlHWuySJaKylBDZmRnb73iv95+Z63M989znPvdZ/xiFo2csXbhpNJoz
+Vj4vvjHdHR+nomjwzbq+ipKQe9kmYm2GSaGr2v+WchJQfdD3VMFbCY+X6ox
rCwtBe0bfGfPjDHxmePNPc1CUlAXpQh29DCxVdGtryojkpATy5bHNUz89MvJ
E3lIEvoaPDYOvs/ERnemz9vZS0LvxzOpNC0mXlZuHuYUzYRnoOsm2UMUNpf3
UObtZMAcAY/TyVEMrOF7feSgOR1euFHjsqaSjt+LP/Z+liIGr7dUnY3slsCf
hTUnQ+4Iw+xR3bMvzMXxF1ynOTMoAH98XKE8d08Ui2W5C4Xa8EFZyZc2RgPC
2IZfT8F2GQ/MNmvi4+sRxj3/1brkLeKBRtdYuaU/hfHFWDkvSToPPD+nR9dp
EMZb+3b+7aLxwC+9VeXrioRxiIP78cIubnjz7e+tzHBhLH/ygb7pU2445yor
92OFMI67nq8upcENuwqDO7zshLD+kQDj7fZc8EjVJdP0/ULY0knxy24rLtjR
HlL0w1QIXzimLWdjxgV/zodG74ZCWJtLfToEcsH2XdeMlikJ4bk0q55lSlyw
uT4qu/KfIG7wFj53eogGK/uSgxVCBHFsDHf+oXAa3D2dMmjtL4hfi/reXhpC
g+Wijw/e9BbEo8tG1nX70+Cn9U81plwFsf2BPUlBZ2jw/bnM3mpjQaw+q+k6
a02DJVx5Fr5Sgjj1hg2/6GoazJX9sLwuTQBzXmt5d8XOg+i1qkzfZAHcYeBV
fOPmPDgPovgUEgTw5Nadv/RC5sEWl0P9nrcEcG3A4+p3p+ZBSfZErvR5Aazc
wtsEd82DSsNVhg47BPCngr79kpNzoOtc2KnB7/xYcH/xPlHHOfA+fNAx9is/
FnN+u+Gf1Rx4fH+fJajnx/SQqNxWkzlwvHSZVtR7fhx95dG9Gu058E/0NW1z
Jj9+cyM6S3nRHOCk9N4J8OXH1MukzvT6WUB92V0kwuTHknI1hz+azoKWkNvx
jaL8uOuyfMn8rlmQuKnN7wE/Pz6SfVF8u94sWBPjrrOew4cH94pd7FSbBfDA
rWLLTj7MqmuDN+iz4NSPxpJ7L/hwenJ/dVjTDCjvdyxbbcKHLc8Lr5NwnQER
99NShnfx4R7XEMEjjjNgn8nI5ULAhzs2K3q+OTADfjwP2Wm8iQ9vOfq985rx
DJjwePzh9GI+fMp22+ebG2aA4lT/p1e9vDg+Iwetnp8GF3nOV++4woslT7fE
xSVNA5UbCW5XAnnxez7b4gvx06CFKhP+5MOLtXfmOLlETwMNRfruPSd5cf3H
BiXb8GkwADM+WJjz4tPhTV05HtPgYOCPkkOyvFi0LPTSih3TQJNtkOPznAdH
nr/G1/GPA34Fn7IofMKDT/PF1P/p44DbgtFDnIc8OF9X3431iwMGF3WuC7zN
g6eiVg1tauOAVE3/jFAfHnx+0Ps/ZjkHML1fpETp8+BqLpeXZ1I4YPjfotjM
Jm6sEfa4/vRhDqD5phQdruPG1gXW/z7acwCda/1PqQpurNpM415lywHqTAPl
4GJu3PuawWLt5QAPLe+i/SnceIPWWMjIDhIv6POPWQ9u3Fi6eaXyGhJPyJ4n
9yQ39rDSFx9UIvFu/1l93JkbF0ckR79WJPFS5zy+2HDj+6mqjk5yJF75Wp6n
ety4rLzdUIBO4tGvrbYQ5cZfIrP1LrPYgBYvacLHz40DZ/vXvphgA/qKJI+i
eS6cRSs90DnKBuqbCwpXjnFhwTyBvQcG2cDD9rcxu5ULJz1Mko3sYoPhR/oe
yU+5sPjWhEyFWjYY2ch5Pb6dC2ve/ST1KJ0N+m87JSjqcuF3wYwBu6ds0DVa
HWSxmQufeDassvQxG3x5+dDg2WoSX9mw9GUSG7zcuKvRSZQL+4/oHltzlw28
N0YOfWmi4S0iz+C2cDZwv83+QqujYTN3rbyDV9nAefRovlo5Db9e/lwoMJQN
9r/cfPF6EQ3fEGFuaQ5mg80b24S3P6ThH79ncqousMHkhlWrco7T8GlX46tl
7mzwL+qW0M8jNLxKuElEx40NekZYA6J2NKz31Ka34AQbNOdU5R43pWHOifmQ
Ulc2KNhwVn/5Rhp2qRAwZB5hg+yobyvNVGl43ijlZp4jG6SN7BAMWEnD6vI7
uw46sMHdHOm6r9I0fIK76V6+HanXUd9C+al5lMi7AqRbs0GHonGwX988+uU1
KuRpxQafu5YaNrfNI0j1JoD9bJBztKzxPzyPNDcwp3r3soHnUfHhmWvzKCHU
INDLlA0mjqSuapObR+deSLc77mKDrEO6Fecl5lHzS+ut53aygattoxvFPY9C
1t94HLGDDVoseHN2/5lDgYk1YTX6bFAEnHVe58whI3FaoJ8eG3jpzHzflzqH
wtPBoRfb2GCtVnTwUOwcamhfwderywYP1N5/WBUwh6xx4A1nHTYIXrrSIsZg
DrVkn/K7toUNtsgWj6pvnUNCMw1P2rTIfJDcH1OtOoeybH/v30B8VDT0Gw9j
Drl8t6f+bGaDXdPdzp5ts+ie8hEZ/01sMDfpLyBeO4vywsZsejeyQf4oMyMd
zyLvbfH1B4iV+3cMdTyeRf/ZrjPfsYENhFtTLph7zCL2ZlWfbevZoKxRR+7v
0Vl0VnXDjTI1Ngj43FBy1WoWKUisjDIhHvzEw1uiPYumX0WbHVtH6p3vFLGW
bxY5WPwXVaLKBuEvp9XLp2aQ/soJTTti/aw7DU79M2i3d+IVjgqZn4/LZO7X
zSBjBx0OJI6JXpEiFD+DQEwnHFBmA7PIN7se35xBZuix+gNi/pv7emHQDOpO
CQ+2IPa9fHmdr/MM0oxlLSlZTdZX0JLPTJsZpBKhbOVL3OeX6/li9wz6q/C2
QoP4oGd3QY/aDPoRaQTzVrEB87T/wRAF4oam9T7E1SeYs0slZ9CmW+ObdYm3
Hdmx3Yo9jYrY3EeqldhguUVKdVnZNJKzbF/PS/zAjM/PoGAahaF79a0r2WCx
6bHVFRnTaOPXa7w5xJJ7VENqo6ZRQtLYvBNxlNF/6/demUbd1U6FgFjccKi9
wXcaPX409luOWGhnrlar4zSijlr5ta1gg6vbpX7b7ZtG6gXSDcXEvPo+t38Y
TKPvkc3BD4nntukMdq+bRtJxq98eJ/bXfRDvqjCNOrIe6ZoTs7TnDfskSXsq
A6OaxKNaZcn/pjkovuvNbyHiM5pKFmeHOOis/ErmhCIbDGiEzY51cRCtXNG2
k/jEpr6M880c9CpjdXYtcc8G4wPsCg569PcR/S2xk/pzvoC3HCQtTvN6Rtyh
JpE7l81B+qwXdQnEbaoNYrx3Oejkx0LbYOIDKpvfXL3BQdERAz5exM3KcceF
gjhIeFjR8xjxvtVsqZueHBTMWw7tiT8r2ZWJu3KQprNB+15i05VvPaJsOShR
RXCbEXGl4jJ5SVMOGuectwPEhgqXqmIhB3XxzqzXIn6/rNtXVoODlgrRctcT
68vvWpWwmoNEHP62KxOXyD1tkF/CQbbjSk8UiXWWCF16JM5BT+wWCSwlfi3r
praSm7z/aRVrEfFmmZq2JxNstJh6c5ZJ/FJ6/bU1fWxU/l7bXYJYXSpK81k7
G32QEe0QIX7OHOtW+8xGZbPRHwSJVSirqJwyNlKW15HiJ06jF+hpFLDRy26n
TzzEShKyA/kZJH6AdyMXcbKY/72tiWyU+71eg0a8TPS7QXEUG4lXd3TMKbBB
gjAY17vCRontfPWzxLJCjx6V+rLRQf/HszPEsQI85jvd2chuaIXjgpn8LjMf
Hdko3PH34DRxJO+n9N372Ej9q2nygsV41thUG7BRzp5S7wVf57rBa67NRvIJ
KYcWLEAbzKlfx0bfHh6wWnDonJnjfgU22q6wc/+CuWazRb9KspHFnwrLBQdO
U0W2gmy0pdB094Kn2d7H2qdZiOG0SX3BvqxmScchFvIp+jHPIZ6Y3PKus4uF
1qbkZi/YcyL+jHMzCxUzpXUWPDQ2I/engoVWLD4ZxyZ2H3WoPPGWhU50MEtY
xP3D2Gcgm4XMcnyeThEfG1JUOpPKQt0zbONJ4rz70KI7lrQ35xgwTsxt5OBv
c42FRjUX7R4lNh/3f1Llz0JxQW5pQwv1TbpXD06zkBgtPXJgIb5JwUzuYRY6
uFmO1UusxW5crbyPhb6yGE2/FurxeNQyYRcLyYd9XdpB/GUvPZC+hYV4worK
vxEvm1uXHqrCQuF0oerGhfwzjBtZcixUlcuQryUusj4x7y7BQjNBK159XKg3
T5hKJxcLWQpHhJUQ73+RamU1PoUmvB/deEWcbPcuuKJnCrHOZRVkEuvmzZIj
dgrdXj59OGZh/A4v4V5VMoWMDvysDCf+Krp1XXz2FLpkwa/pT7yy0PqAeMoU
+iv8/q77Qr1dvC+HxEyhtwan+uyJEeN21mTYFEoOs5E3IRYtedF60m8KZci1
rtMmfir9d/0+xynU/Wj+FUU8/k7Q7tPeKXTumNWS2eVssP3Mqqs6O6dQxdZU
jR7i9k9H2lesmUK0wrv2ecQq3kECd5dMIe3MSZt7xD7LH2wUFZ9CudtLOgKI
qQst4eOjkyhfid8bEB9Wmsw9/nsSPeUxdJMnfl7P/Nn+dRJ5FXpWTC9jAyMV
880fiidRprZMdA5xTLP74a0vJpH5O7vBa8RdIddvPH80iXjSloYdJr7Y9qEz
5uoksk58ayVIXBnWLSp8YRJZnj3j0yrPBjIaXFsC3SZRk4Zhbhrxy5u6Ea4W
k2igRX6fPnHvtlxtrcWTyKSxcPXBpWyg2f/ZJVN0El2V/C6+hPhy7L/IZfMT
SO7U67JWOTaQH1rzR+DXBIoxuehhQex235AKaJ5Ad2sOWQkSvzZ02TZcPoFa
j//qfLuE7IdJSXdank8gHfVfVQrESSYlJSZJE0i64oj058XkvsVq68O3J5C+
U0SXP3H43kUw3WcCHfxH/1YlS/Y37oiBC/oTiPmyV9dEhuynOecUmzQmUHvB
7QsDi0g9Dh86oK48gYS2NRtdJ+ZDa9/3iE+g35dvBJdIs4GJf9X9fe3jyHfD
y0BBKTZwUMmtz6obR+D3cr9oSXJ/bY0XEC4bR/iKVNVS4mitk144fRz9e6Rk
rswk+/+YoPE6n3HUvHq/iByDnC/Jw8HhJ8cRPcH2RxSdnF97W/K7D42jN+M6
lbzEitlPFeN3jqPUQOfaTnE2OOluwOGnxtFsvtErH1Fynv26nN7xbAwZvS9x
ExUg95Vot586SWOoPPiagQU/G8jt2CcVd2cM8QftfBfJxwbgkeIlU78xdD+3
OVCAl5ynh0oPFBmOoTyxcd0qGrlPiqZHSOmMoZ0mReZj8yyQ8SbyvYfaGKrp
B+WLiGtlD6uvliLPWxbXWM2ygFTznEB01yj65HL9wGM2C6y60rNtqGkUJUzk
V71gscAWjVqvPRWjyH6G62T+FAvY337wk5Y9igbz6oRfT7BAqpluwamLo0ii
8Cvj5ggLbPx0wdVQZhQVB6t3efSygOTKpYujhUfRcqfhkOV/WGAyGNd0zIwg
o9BPS6p+s0CRtsBmv84RBHT8GIxuFtieFc3zPGMEjc6xJRy/s8C+mBdJ1LYR
tNptY+D0ZxbQHLXc77h+BPXefXjcuo4FZMwnBZ4pjCBtvfY3mTUs0C647cwu
/hEkvfrihV2VLOAcULnNt24Y3bSyttMoYwFvp9/fvh8ZRmr7xBexclnAGodH
qOwfRuGMn94TOaS/S9du9zEgz+9bZA+8YIGZZs90uuowaknuflCeyQJCMbTh
q71DqHz5MZfNKSyg4qSpYik2hC7pzuq3RbKA2/yjxF7rQWRsVSUqf4wFsLrX
Wy7dQcR6UKax35nU4+jO9sUKg0jTbIv35SMsUPK+R9b07wDq+XR9SY0dC1DX
VWNyggZQsNgdbVELFngt+eqGX9pf9DwyDG7SYgExg6sZd/77i1pYq1ymNrHA
UR+bimeef1FntLVqnjoLiH5j8//U/YuGdRKDFqmwgONDvZAd9f2o6q9/UKgc
C/CrlPuKcvoQq3N75sj8FLCzuxen9LMPrehyjdadmQLZN0/m673vQ/GfnbKC
WFPg4JDouEdEH5q+7Wv7b3gKPM/be6ZJsQ9VxW2uce+cAvtBm0uicS86rphp
0IunQPL+f5bqD3qQUcvnG5kXpkDwjX1hi0J7UHjUm13656aAw7vXb+ZO9qCR
1LuBdR5TQFb98sqaLT2IsVbPtunYFIgUkZk80fgbXa0oX33VagoEvtO/lyLy
Gwnnf/jts57kox7zU9qvG4Wazr/1+z4JthzjMOcOd6O0FDmhRS2TQDrR0ei3
YTeSq/qmm/llEtSLqOTkSnUjJ8dXJm8+TQKjPyUhFjldSHSrQ/SFnEmgmdir
dL23E9UlNAm4XZ4ElKiu+6x1B7pQfPE5r8IkiEyUSfik04FcP9R1CC+eBOIb
JqqilnegANPwKX4mae+ZvY1J40/0a4lScQfvJBCE+s0POD/QIWdP+cW9E2Dg
mHAjNPyOJi693p70bALkFSTUXe1oRWaPPd3b1k2A7Har9UsyWlH7de4jMUoT
4DmXxK0XXq2Iq3o4a+fSCfDE+JJZC38ryg5IMbwsOgHu/nSpWbOuBenXrecJ
7h8HAQLrq6ovNCMryQpP79RxsMOm9CPFbEBq1fGmG+jjwDIsee+Oji+o8trf
y5sExsHhgsvtXs+/IC8xPsm1c2MgYJHBaKPhF1QbZLWFNjAGXn2tXBoXUI8k
p6QtNT6NAbPstD7N6jqUdia4u8J/DEi/rN1l5FmBXHVu3Uj4PgpM3DbPNAUU
otB4vlehl0eASK/Yr5hXr9Gz8nOlRr4joNK5p8rqXwHKzF2tzHNqBBg5xN1v
csxH6V8ucNlZj4Cde9naTdtzUc1avfpY5RHgd9pvLI2RgTaI5TrpVQ2DbJek
Xof4oyjxirn/HqFhMOKcKaa+7zVQ5L/T/vjzAFATkdlzQLUQdMf91eTLHQAn
c0KvBvMUAYVbM+2mMQPg1+yh+c+5b4DFFUHJ+7YDoCWWPnJWEgFfs7vHlDr/
gsO/tPtb+98Bc7ZM2vTffmAknVSz5FkF0LB4zCod7gWi2zZXmsc1gCR9u2dX
Cn6BzacDnZxlO8Dca5GXcj+/gvdWIrxH//WAyL7auE7VFLDCllN6NmUQHF5i
5LrmSyNSmvUSCxwdARr8TbanaT0ozXa+stt6AqzN8HnwI3oESfAJN1+9xAIO
w9Ktcp1TyKHkw9DGhGlwo3lFZBdzDj3giY0P4syBUtXdsawD3LijyrMiVIIL
ek2XyfhZ8uH+tpXi8WXccJeLrfAme0HseieWXXOQF164GvNsO0sYN9cfdufv
54Nvi2JXBRuIYT3rV6sl7gtA8bq0r+3nJPC/J9s+OD4SgBs+b3x96KIEfjD1
4Wj2UwG4S0EytzVUAs/cbX6wN08Ash5OjL+7I4EL26aY0TUC8Ev8fzEHcySw
xhFtmixNEAZ79OY/+CuBVdxRi6KLINQdZJZqqdHxopCKa5rrheD2SfvqmDg6
/jHtdVxcUwhWz9olcOLp+Mk5ecMeXSHYMSgXZJ9IxxonvHhj9wjB81K8Fxc9
pmNLi6VBEy5C0NK02O7kSzq+KX/WOy9BCJZMB+dfrqZj2hsZx43CwnC4QOTn
lTk6/qRRtk2YIQw7Jqf1/uNi4IisU3Jdi4Sh4saS/CheBl6a/K41SkkYxt7p
+xclzMDa19z3j0BhSCtNv35GmoG9bfDubB9h+PKyxtuH6xi4b+yYhtpvYfi5
43lvsy0DV9etV+r5KwxNauejztkzcHbmlFTiqDC0FJbyZzgy8HmnsCkxmggs
25guru/MwNwNT4oGF4tAlRVle4JOM/Dil7/hcwsRWHnfLc43hIFNPJxM1xaL
wHXmfQNH0xh4vYmq3q93IvBE6emijAwGppTH1BIqRGBslmP70DMGbvkZQhf9
KgIXB99d7pnDwM7myQ1/R0Tg1G8HbF3EwBfVOm0zV4vCcjcV5qMqBs4acHBV
uSMK87YmS8MBEv9Taf3pe6LQzcvmNvWP5P9o5bbch6Jwa9zzhq4hBn5p3c/U
fSYKw5L8MwLGGPgVPldq+kEUTq1NRTEcBi6Ovil3dkoUOpV+3OkgSOFK3aIv
BXZicM23rt9mihQ2XrRUb+aIGNx4/m1p2woKV48EpcPjYvCVYWmQqxKFa5/s
Cq7wFoO9impPzilTuJ5ev67tPzEoZWf02k+Nwi2//oTPITE4lirZsFybwr9v
SoFdK8Xhi2T/jb/MKRwYGf+XrioO91d4rjDeS2Hp6GV32zeIw7BQBfTCksJG
99eMeAFxaJ7vMXPWisIZ6dtSkg+Kw4/luODbQQp7fHQRoEWJw8DmkYt6LhQW
quzPrYoTh+FRiVXBrhROrjlzOC5RHCbuH2rDxyjc0HihUO2ZODS2zdmjfZLC
mt3/uR36JA6bVINvUmcoPDP/qq5oVhxOpFfwHvSlcAyPTsBVXgk4I7xG+8IF
CqsJYGVLEQkodDXfONaPwo7ilZf6ZCSg67IJocoACr+T+7FJRkMCSq4KV5C5
ROHwrfx3z52UgHa7dTUtrlFY0sv6sPpXCVjrWC2me5fCe86dDwv/LgH1og8f
F7lH4Us+sVkd3RKwX65dqpX4n3/zTOSwBLxWEHTmzH0KO2/PrGbx0qHZtbOG
4YkU1jNWPWErT4e1WPm7WyqFbU3eBFxRoMPKt7pLFB5T2NvUODJnJR3aCV9/
30icae5WIKRKhwYhgo5aTykssz+Tr0iLDqfQvp996RQetVdNXryXDnsjTU7z
vaCwmMObVwb76VD22TW5ZGJlR+MKTxs65I+zMN+WTfp/xG248hAdJhqMGJ3J
IfPDJVPP/yQdUoV/CktzKfzktGpb22U6VJkYoym+pnDpmTf/BMLoMG/buTdP
ids9jLk1rtMh0wNJri2kMNPLbc3NSDp8eexQhnoRhYN9Mn10H9AhjC+IXFNM
YbtgVckH+XQYnu32vg1ROHRjpXphIR1GPJ/h3oMpnPXruGlTMR3OhC8VLCCm
7X5yVayMDk9W3XT/r5TCqQwF9sU60n/J4irVMlLfZOkfDr10eGnrLUv1jxRe
ZPWK4/eXDqfPOZbcIIYC+xfF/aPDt7eERXqIb7tFWdSN06FbYIJp3CcKa2mI
lgEuBuz4EPJkoJzk+4ErbfliBhn/pcudqyic7pP0XncpA446CThlEX9ZAzoP
LGfAGN4Pj6aIlSICFketYsCK4gjZsGqy/qynbnJtYsB+BRPF+BoKjwnGpi/V
ZMAe7bde7cRybzQ+bt3KgDVThbVLayl8epnn/FlA2s/flvaAmNk7cLbLmAF7
v3fK3q6jsG78jYg5M/L+rWW91cSuJiqZiy0ZcIfzxxr+zxR+nX3sl+UBBgyo
MerxIba/0GVd5syAhg70i+b1ZPyEW3RSLzKg5cPuyqYvpP71AmyeSwxY/d/y
5/wNFKbf1cp3CmXA1n0diZrEfkpx6ituMOCrd5zCO8Tm0Fop+S4DvjgOxXc0
UphX4GoXVwID/orTeOZOXFTz6uGRhww4vLHTLYZ4pZ3UYoUnDMh//rrtL2LW
uUbxpFwGvBRtpubbROHnurzV8/kMqKW8afF94qM8GtccixhwZOc67bfE1ZF3
eJaVMuDzF/eXzRM/yrRkPahlwM8nmaUXmils7RnyaraeAfmcLSNiiUW3vvQ8
1MSAakbKyS+Jz39kDMq1M6B1ZPeTXuI9nZ877/cxILc/cjH5SuH5p7SH0wMM
WBXUmuZEnHda3d5umAGfVK3d5UcsP3OrefEUA6pfaL39mLjhHbrjxyHvy3ca
FRGHXxuy+DbLgM03A4/UEo9Jm1fd46Wgh0p72Thx2vfAcLYABffJmVECLRR2
SM3aZStCQTm7wmoZ4vIN4liGomDV1+4IbeIEk5q8uGUUHP/oc92HeC9z9uyU
IgUPrU3yu0LM/23teptVFPTfktB3m9jj2M106XUUfBt+2fQZsZJaset5dQq+
rl1j+Jr42/jfFc2bKPjqjWxFGfHOEOPEGG0KSu6wONNKzDbyt5vYRsGs8P13
u4mzJDJlrPQpaFu+dN8gscwD4TuSRhRsnrwYNk9c46Rt4W1MwT28TXyCrRQO
UTkp1mhGwexdZ5fRiQcLKsLuWFHwY+nMumXEw7MGIYUHSHuPVuQqEY/veB/w
046CaV5velWJZ+pKzqoepWDHzLS7FjFNWtd9rwsF09eHIl1iXvtCV5/jFIw3
1q3UJxbtzbUrO01BwTWzEsbEdLUN1n1nKRhV2WNmTizpnWUhcY6CE9Q7033E
MkWqxpt9KdjyNUjchliOlr7Lzp+C1lKMOweJlxusgpcCSf8GXL8fIl55M0X7
6SUK1qV4Dh0mXiuTuH4sjILaXmc9XYnVHZaoyN6g4Gps+Oc4sUbq3ZUggoLy
++JV3Yi39Estc4miYD/TTv8Usa76Hdkb0RRcJxCgcoYYnqdL5sRRUN10qNeD
eGfxf+Jf40n9lz8N9CQ24hYRmn1AwYSmmEEvYhOjcJ4Vj0h/vj7XOkdsEcE3
Z5RKwWsZnQ7nifc3hrBOP6Xgh98rXHyIDyymjUVnUDBQ85iJL7H94YuDRc8p
WGyfKH2B+PATzp+ObAqGqRR/WLDzgE8Xfx4Zv5BcOz/i4xsn2tcWUDDRxufb
gt19Pb9aFlFwUQZnhz+xR8lQve9bCgqFq8cv2Jv3VHUipqCdiOjPBfvu6f/4
voyCLw8ESwYQB0QeK+3/SEG9xGDdBQc3/3pDr6TgVYpmu+BQuaP5mjUUVBsb
cVtw+NGf2fafKVhxebfPgm+m2WeGNJB8RDkBC4781/o4rZmC3q2TgQuO1rBJ
qm0l62PLpqAF3/VrjB9vp2CIb/L/OQHvjVncQcGBXq2QBSfx192C3RQ0/9oT
vuBUE5Prrj0UbIxIjllw2u2K0Jt9FOyxdshY8LMWg6CXAxScPitWseBs+fcX
WoYo6CCXMrbgPGd977lRCs5cp9ZeJH6dUXJ65SQFVfvNvBdcPKxzYg+bghfs
jWsXjDULnTxmKHiOzdEJJH4foOkQO09Bv2oLtODyd7kHirmZ0KcBHAwirhbc
sK+LjwnRbJF4MPFnsyxTQSEmrFd59WPBjdGqRmqiTKi4RqH6EnHLt7Tt+yWY
cCBvpCWEuH35qm1+FBOOnpcVCCXucE3RSpJiwn08Nw5cIf71bPnGjzJMuLdl
S91V4t7RB2sHljDh4kNSp8KJB7YsWU0tY8L4DkrjOvETHqMfMYpMWG46dvTm
wnyq9Y6RXcWENqObKyOIF997ZPJgDRMOhd5yjyJucqrlUVjHhPci8kyiF8ZP
bbooVZ0JM4/bnooj3sNe7amswYTZ2hvr44lLIi51rNdhQl1H81PJC/PJNisu
V48Jl0xwMp4Qb1zZZqa1nQnd+dI1Mxfy+yfA/2YXqddDUWY28dNCjbd6u5lQ
K7pl+yvio6FHvN+ZMKG+NyovWlj/5hGqBhZMmPuf11O8kM+vP/dMbZjQ1UTE
r2YhnxeSe+sPMmGlmqVX48L+46cvaOVAfo/Xfm4jviBx/7y9CxPuUTuM/i6s
/2+f1nUcZ8IVHbI248T/Usd/Obkz4fM+5UOzC+1rm+1z82JCLMWH6N9I+3z+
wkPnmVDMRX35EuLmuqelnn6kP0dOcZSIjV241P0uMaH5h8aV24g1IvNEr91i
wnP3zRLOEv872FkmeocJWRrz9GDiNCVx/8hYJqxeoix5i3jpm2N9cQ+Y8KRJ
xOcs4pYr0UlLHjHh1a3LbyHi2xalNg9TmTAgv6HnMzF/z+KPTzKZMDVph/sE
Mc42vKjyggnPzls8FGwj57+/t0bWSybUrFE4L0c8RK9NflXIhNFbMmQNiFt0
LgW9/8SE/NaXQh4R3+bP0jSqYsKc+JalRcQm9d8Gq2qZ0KlJ3rOBuNRVw76h
ifQnk8dCsJ3c/6P+bOnqZsKqDT9V/Imd7SWHXf6Q+Wlz9Os94mWr9Z/29TOh
7+72vYXE0cXxUiMjTNjPu+4Nh9gs7FO19wQTmnrqvZD7TmFBy/HLLBYTnhl+
4w++L9zfFXQCZsj4bdJf4UT8//8Xg66GJ9LCiP8Hwbn7QQ==
"]]}},
AspectRatio->NCache[GoldenRatio^(-1), 0.6180339887498948],
Axes->{True, True},
AxesLabel->{None, None},
AxesOrigin->{0, 0},
DisplayFunction->Identity,
Frame->{{False, False}, {False, False}},
FrameLabel->{{None, None}, {None, None}},
FrameTicks->{{Automatic, Automatic}, {Automatic, Automatic}},
GridLines->{None, None},
GridLinesStyle->Directive[
GrayLevel[0.5, 0.4]],
Method->{"DefaultBoundaryStyle" -> Automatic, "ScalingFunctions" -> None},
PlotRange->{{-5, 5}, {-4.7163378061539785`, 5.283661785682757}},
PlotRangeClipping->True,
PlotRangePadding->{{
Scaled[0.02],
Scaled[0.02]}, {
Scaled[0.05],
Scaled[0.05]}},
Ticks->{Automatic, Automatic}]], "Output",
CellChangeTimes->{3.680811602681246*^9}]
}, Open ]],
Cell[CellGroupData[{
Cell[BoxData[
RowBox[{"\[Pi]", " ",
RowBox[{"Rationalize", "[",
FractionBox[
RowBox[{"N", "[",
RowBox[{
RowBox[{"-",
FractionBox[
RowBox[{"3", " ", "\[Pi]"}], "16"]}], "+",
RowBox[{"Cos", "[",
FractionBox[
RowBox[{"3", " ", "\[Pi]"}], "16"], "]"}]}], "]"}], "\[Pi]"],
"]"}]}]], "Input",
NumberMarks->False],
Cell[BoxData["0.24242098975445903`"], "Output",
CellChangeTimes->{3.68080757874109*^9}]
}, Open ]],
Cell[CellGroupData[{
Cell[BoxData[
FractionBox[
RowBox[{
FractionBox[
RowBox[{"3", "\[Pi]"}], "16"], "+",
FractionBox["\[Pi]", "4"]}], "2"]], "Input",
CellChangeTimes->{{3.6808076112789507`*^9, 3.6808076830570564`*^9}}],
Cell[BoxData[
FractionBox[
RowBox[{"7", " ", "\[Pi]"}], "32"]], "Output",
CellChangeTimes->{3.6808076915405416`*^9}]
}, Open ]],
Cell[CellGroupData[{
Cell[BoxData[
RowBox[{"f", "[",
FractionBox[
RowBox[{"7", " ", "\[Pi]"}], "32"], "]"}]], "Input",
CellChangeTimes->{{3.6808078577870502`*^9, 3.680807865611498*^9}}],
Cell[BoxData[
RowBox[{
RowBox[{"-",
FractionBox[
RowBox[{"7", " ", "\[Pi]"}], "32"]}], "+",
RowBox[{"Cos", "[",
FractionBox[
RowBox[{"7", " ", "\[Pi]"}], "32"], "]"}]}]], "Output",
CellChangeTimes->{3.6808078682436485`*^9}]
}, Open ]],
Cell[CellGroupData[{
Cell[BoxData[
RowBox[{"\[Pi]", " ",
RowBox[{"Rationalize", "[",
FractionBox[
RowBox[{"N", "[",
RowBox[{
RowBox[{"-",
FractionBox[
RowBox[{"7", " ", "\[Pi]"}], "32"]}], "+",
RowBox[{"Cos", "[",
FractionBox[
RowBox[{"7", " ", "\[Pi]"}], "32"], "]"}]}], "]"}], "\[Pi]"],
"]"}]}]], "Input",
NumberMarks->False],
Cell[BoxData["0.08578706038996975`"], "Output",
CellChangeTimes->{3.680807875189046*^9}]
}, Open ]],
Cell[CellGroupData[{
Cell[BoxData[
FractionBox[
RowBox[{
FractionBox[
RowBox[{"7", "\[Pi]"}], "32"], "+",
FractionBox["\[Pi]", "4"]}], "2"]], "Input",
CellChangeTimes->{{3.680808240936965*^9, 3.6808082440891457`*^9}}],
Cell[BoxData[
FractionBox[
RowBox[{"15", " ", "\[Pi]"}], "64"]], "Output",
CellChangeTimes->{3.6808082452212105`*^9}]
}, Open ]],
Cell[CellGroupData[{
Cell[BoxData[
RowBox[{"f", "[", "%", "]"}]], "Input",
CellChangeTimes->{{3.680808378428829*^9, 3.6808083814450016`*^9}}],
Cell[BoxData[
RowBox[{
RowBox[{"-",
FractionBox[
RowBox[{"15", " ", "\[Pi]"}], "64"]}], "+",
RowBox[{"Cos", "[",
FractionBox[
RowBox[{"15", " ", "\[Pi]"}], "64"], "]"}]}]], "Output",
CellChangeTimes->{3.6808083829830894`*^9}]
}, Open ]],
Cell[CellGroupData[{
Cell[BoxData[
RowBox[{"With", "[",
RowBox[{
RowBox[{"{",
RowBox[{"d", "=",
RowBox[{"N", "[",
FractionBox[
RowBox[{
RowBox[{"-",
FractionBox[
RowBox[{"15", " ", "\[Pi]"}], "64"]}], "+",
RowBox[{"Cos", "[",
FractionBox[
RowBox[{"15", " ", "\[Pi]"}], "64"], "]"}]}], "\[Degree]"], "]"}]}],
"}"}], ",",
RowBox[{"Defer", "[",
RowBox[{"d", " ", "\[Degree]"}], "]"}]}], "]"}]], "Input",
NumberMarks->False],
Cell[BoxData[
RowBox[{"0.2658723083079614`", " ", "\[Degree]"}]], "Output",
CellChangeTimes->{3.680808394245734*^9}]
}, Open ]],
Cell[CellGroupData[{
Cell[BoxData[
RowBox[{"\[Pi]", " ",
RowBox[{"Rationalize", "[",
FractionBox[
RowBox[{"N", "[",
RowBox[{"0.2658723083079614`", " ", "\[Degree]"}], "]"}], "\[Pi]"],
"]"}]}]], "Input",
NumberMarks->False],
Cell[BoxData["0.0046403471698514`"], "Output",
CellChangeTimes->{3.6808084018421683`*^9}]
}, Open ]],
Cell[CellGroupData[{
Cell[BoxData[
FractionBox[
RowBox[{
FractionBox[
RowBox[{"15", "\[Pi]"}], "64"], "+",
FractionBox["\[Pi]", "4"]}], "2"]], "Input",
CellChangeTimes->{{3.6808085929210978`*^9, 3.68080860466877*^9}}],
Cell[BoxData[
FractionBox[
RowBox[{"31", " ", "\[Pi]"}], "128"]], "Output",
CellChangeTimes->{3.680808605691828*^9}]
}, Open ]],
Cell[CellGroupData[{
Cell[BoxData[
RowBox[{"f", "[", "%", "]"}]], "Input",
CellChangeTimes->{{3.6808086828022385`*^9, 3.6808086903756714`*^9}}],
Cell[BoxData[
RowBox[{
RowBox[{"-",
FractionBox[
RowBox[{"31", " ", "\[Pi]"}], "128"]}], "+",
RowBox[{"Cos", "[",
FractionBox[
RowBox[{"31", " ", "\[Pi]"}], "128"], "]"}]}]], "Output",
CellChangeTimes->{3.6808087713593035`*^9}]
}, Open ]],
Cell[CellGroupData[{
Cell[BoxData[
RowBox[{"\[Pi]", " ",
RowBox[{"Rationalize", "[",
FractionBox[
RowBox[{"N", "[",
RowBox[{
RowBox[{"-",
FractionBox[
RowBox[{"31", " ", "\[Pi]"}], "128"]}], "+",
RowBox[{"Cos", "[",
FractionBox[
RowBox[{"31", " ", "\[Pi]"}], "128"], "]"}]}], "]"}], "\[Pi]"],
"]"}]}]], "Input",
NumberMarks->False],
Cell[BoxData[
RowBox[{"-", "0.03660738783981099`"}]], "Output",
CellChangeTimes->{3.680808777362647*^9}]
}, Open ]],
Cell[CellGroupData[{
Cell[BoxData[
FractionBox[
RowBox[{
FractionBox[
RowBox[{"15", "\[Pi]"}], "64"], "+",
FractionBox[
RowBox[{"31", "\[Pi]"}], "128"]}], "2"]], "Input",
CellChangeTimes->{{3.6808089511425867`*^9, 3.680808955731849*^9}}],
Cell[BoxData[
FractionBox[
RowBox[{"61", " ", "\[Pi]"}], "256"]], "Output",
CellChangeTimes->{3.6808089582549934`*^9}]
}, Open ]],
Cell[CellGroupData[{
Cell[BoxData[
RowBox[{"f", "[", "%", "]"}]], "Input",
CellChangeTimes->{{3.680809057782686*^9, 3.6808090612098823`*^9}}],
Cell[BoxData[
RowBox[{
RowBox[{"-",
FractionBox[
RowBox[{"61", " ", "\[Pi]"}], "256"]}], "+",
RowBox[{"Cos", "[",
FractionBox[
RowBox[{"61", " ", "\[Pi]"}], "256"], "]"}]}]], "Output",
CellChangeTimes->{3.680809062617963*^9}]
}, Open ]],
Cell[CellGroupData[{
Cell[BoxData[
RowBox[{"\[Pi]", " ",
RowBox[{"Rationalize", "[",
FractionBox[
RowBox[{"N", "[",
RowBox[{
RowBox[{"-",
FractionBox[
RowBox[{"61", " ", "\[Pi]"}], "256"]}], "+",
RowBox[{"Cos", "[",
FractionBox[
RowBox[{"61", " ", "\[Pi]"}], "256"], "]"}]}], "]"}], "\[Pi]"],
"]"}]}]], "Input",
NumberMarks->False],
Cell[BoxData[
RowBox[{"-", "0.01592835281578009`"}]], "Output",
CellChangeTimes->{3.6808090676272492`*^9}]
}, Open ]],
Cell[CellGroupData[{
Cell[BoxData[
FractionBox[
RowBox[{
FractionBox[
RowBox[{"15", "\[Pi]"}], "64"], "+",
FractionBox[
RowBox[{"61", "\[Pi]"}], "256"]}], "2"]], "Input",
CellChangeTimes->{{3.6808092064711905`*^9, 3.680809215659716*^9}}],
Cell[BoxData[
FractionBox[
RowBox[{"121", " ", "\[Pi]"}], "512"]], "Output",
CellChangeTimes->{3.680809222802125*^9}]
}, Open ]],
Cell[CellGroupData[{
Cell[BoxData[
RowBox[{"f", "[", "%", "]"}]], "Input",
CellChangeTimes->{{3.680809313235297*^9, 3.6808093154124217`*^9}}],
Cell[BoxData[
RowBox[{
RowBox[{"-",
FractionBox[
RowBox[{"121", " ", "\[Pi]"}], "512"]}], "+",
RowBox[{"Cos", "[",
FractionBox[
RowBox[{"121", " ", "\[Pi]"}], "512"], "]"}]}]], "Output",
CellChangeTimes->{3.680809317203524*^9}]
}, Open ]],
Cell[CellGroupData[{
Cell[BoxData[
RowBox[{"\[Pi]", " ",
RowBox[{"Rationalize", "[",
FractionBox[
RowBox[{"N", "[",
RowBox[{
RowBox[{"-",
FractionBox[
RowBox[{"121", " ", "\[Pi]"}], "512"]}], "+",
RowBox[{"Cos", "[",
FractionBox[
RowBox[{"121", " ", "\[Pi]"}], "512"], "]"}]}], "]"}], "\[Pi]"],
"]"}]}]], "Input",
NumberMarks->False],
Cell[BoxData[
RowBox[{"-", "0.005630132459280457`"}]], "Output",
CellChangeTimes->{3.680809321935795*^9}]
}, Open ]],
Cell[CellGroupData[{
Cell[BoxData[
FractionBox[
RowBox[{
FractionBox[
RowBox[{"15", "\[Pi]"}], "64"], "+",
FractionBox[
RowBox[{"121", "\[Pi]"}], "512"]}], "2"]], "Input",
CellChangeTimes->{{3.6808095223562584`*^9, 3.6808095274565496`*^9}}],
Cell[BoxData[
FractionBox[
RowBox[{"241", " ", "\[Pi]"}], "1024"]], "Output",
CellChangeTimes->{3.6808095313137703`*^9}]
}, Open ]],
Cell[CellGroupData[{
Cell[BoxData[
RowBox[{"f", "[", "%", "]"}]], "Input",
CellChangeTimes->{{3.6808095976415644`*^9, 3.6808096020988193`*^9}}],
Cell[BoxData[
RowBox[{
RowBox[{"-",
FractionBox[
RowBox[{"241", " ", "\[Pi]"}], "1024"]}], "+",
RowBox[{"Cos", "[",
FractionBox[
RowBox[{"241", " ", "\[Pi]"}], "1024"], "]"}]}]], "Output",
CellChangeTimes->{3.68080960316188*^9}]
}, Open ]],
Cell[CellGroupData[{
Cell[BoxData[
RowBox[{"\[Pi]", " ",
RowBox[{"Rationalize", "[",
FractionBox[
RowBox[{"N", "[",
RowBox[{
RowBox[{"-",
FractionBox[
RowBox[{"241", " ", "\[Pi]"}], "1024"]}], "+",
RowBox[{"Cos", "[",
FractionBox[
RowBox[{"241", " ", "\[Pi]"}], "1024"], "]"}]}], "]"}], "\[Pi]"],
"]"}]}]], "Input",
NumberMarks->False],
Cell[BoxData[
RowBox[{"-", "0.0004914153002639754`"}]], "Output",
CellChangeTimes->{3.680809609540245*^9}]
}, Open ]],
Cell[CellGroupData[{
Cell[BoxData[
FractionBox[
RowBox[{
FractionBox[
RowBox[{"15", "\[Pi]"}], "64"], "+",
FractionBox[
RowBox[{"241", "\[Pi]"}], "1024"]}], "2"]], "Input",
CellChangeTimes->{{3.6808099686057825`*^9, 3.680809975083153*^9}}],
Cell[BoxData[
FractionBox[
RowBox[{"481", " ", "\[Pi]"}], "2048"]], "Output",
CellChangeTimes->{3.680809976876255*^9}]
}, Open ]],
Cell[CellGroupData[{
Cell[BoxData[
RowBox[{"f", "[", "%", "]"}]], "Input",
CellChangeTimes->{{3.6808101646709967`*^9, 3.680810169987301*^9}}],
Cell[BoxData[
RowBox[{
RowBox[{"-",
FractionBox[
RowBox[{"481", " ", "\[Pi]"}], "2048"]}], "+",
RowBox[{"Cos", "[",
FractionBox[
RowBox[{"481", " ", "\[Pi]"}], "2048"], "]"}]}]], "Output",
CellChangeTimes->{3.6808101728184624`*^9}]
}, Open ]],
Cell[CellGroupData[{
Cell[BoxData[
RowBox[{"\[Pi]", " ",
RowBox[{"Rationalize", "[",
FractionBox[
RowBox[{"N", "[",
RowBox[{
RowBox[{"-",
FractionBox[
RowBox[{"481", " ", "\[Pi]"}], "2048"]}], "+",
RowBox[{"Cos", "[",
FractionBox[
RowBox[{"481", " ", "\[Pi]"}], "2048"], "]"}]}], "]"}], "\[Pi]"],
"]"}]}]], "Input",
NumberMarks->False],
Cell[BoxData["0.0020753364865228052`"], "Output",
CellChangeTimes->{3.6808101770857067`*^9}]
}, Open ]],
Cell[CellGroupData[{
Cell[BoxData[
FractionBox[
RowBox[{
FractionBox[
RowBox[{"481", "\[Pi]"}], "2048"], "+",
FractionBox[
RowBox[{"241", "\[Pi]"}], "1024"]}], "2"]], "Input",
CellChangeTimes->{{3.680810757517905*^9, 3.6808107669584455`*^9}}],
Cell[BoxData[
FractionBox[
RowBox[{"963", " ", "\[Pi]"}], "4096"]], "Output",
CellChangeTimes->{3.6808107684615316`*^9}]
}, Open ]],
Cell[CellGroupData[{
Cell[BoxData[
RowBox[{"f", "[", "%", "]"}]], "Input",
CellChangeTimes->{{3.680810838130516*^9, 3.680810841151689*^9}}],
Cell[BoxData[
RowBox[{
RowBox[{"-",
FractionBox[
RowBox[{"963", " ", "\[Pi]"}], "4096"]}], "+",
RowBox[{"Cos", "[",
FractionBox[
RowBox[{"963", " ", "\[Pi]"}], "4096"], "]"}]}]], "Output",
CellChangeTimes->{3.680810842200749*^9}]
}, Open ]],
Cell[CellGroupData[{
Cell[BoxData[
RowBox[{"\[Pi]", " ",
RowBox[{"Rationalize", "[",
FractionBox[
RowBox[{"N", "[",
RowBox[{
RowBox[{"-",
FractionBox[
RowBox[{"963", " ", "\[Pi]"}], "4096"]}], "+",
RowBox[{"Cos", "[",
FractionBox[
RowBox[{"963", " ", "\[Pi]"}], "4096"], "]"}]}], "]"}], "\[Pi]"],
"]"}]}]], "Input",
NumberMarks->False],
Cell[BoxData["0.0007921780792695676`"], "Output",
CellChangeTimes->{3.6808108462969832`*^9}]
}, Open ]],
Cell[CellGroupData[{
Cell[BoxData[
FractionBox[
RowBox[{"963", " ", "\[Pi]"}], "4096"]], "Input"],
Cell[BoxData[
FractionBox[
RowBox[{"963", " ", "\[Pi]"}], "4096"]], "Output",
CellChangeTimes->{3.6808110217320175`*^9}]
}, Open ]],
Cell[CellGroupData[{
Cell[BoxData[
RowBox[{"N", "[",
FractionBox[
RowBox[{"963", " ", "\[Pi]"}], "4096"], "]"}]], "Input",
NumberMarks->False],
Cell[BoxData["0.7386117493669362`"], "Output",
CellChangeTimes->{3.6808110278283663`*^9}]
}, Open ]],
Cell[CellGroupData[{
Cell[BoxData[
RowBox[{"N", "[",
RowBox[{
FractionBox[
RowBox[{"963", " ", "\[Pi]"}], "4096"], ",", "20"}], "]"}]], "Input",
NumberMarks->False],
Cell[BoxData["0.73861174936693625210925917434037140564`20."], "Output",
CellChangeTimes->{3.6808110877107916`*^9}]
}, Open ]],
Cell[CellGroupData[{
Cell[BoxData[
FractionBox[
RowBox[{"963", " ", "\[Pi]"}], "4096"]], "Input"],
Cell[BoxData[
FractionBox[
RowBox[{"963", " ", "\[Pi]"}], "4096"]], "Output",
CellChangeTimes->{3.680811172954667*^9}]
}, Open ]],
Cell[CellGroupData[{
Cell[BoxData[
RowBox[{"N", "[",
FractionBox[
RowBox[{" ", "\[Pi]"}], "4096"], "]"}]], "Input",
CellChangeTimes->{{3.6808111831022477`*^9, 3.6808111834492674`*^9}},
NumberMarks->False],
Cell[BoxData["0.0007669903939428206`"], "Output",
CellChangeTimes->{{3.680811176270857*^9, 3.6808111845913324`*^9}}]
}, Open ]],
Cell[CellGroupData[{
Cell[BoxData[
RowBox[{"1", "/", "1000"}]], "Input",
CellChangeTimes->{{3.6808112081856823`*^9, 3.680811210744828*^9}}],
Cell[BoxData[
FractionBox["1", "1000"]], "Output",
CellChangeTimes->{3.680811212180911*^9}]
}, Open ]],
Cell[CellGroupData[{
Cell[BoxData[
RowBox[{"N", "[",
FractionBox["1", "1000"], "]"}]], "Input",
NumberMarks->False],
Cell[BoxData["0.001`"], "Output",
CellChangeTimes->{3.680811214690054*^9}]
}, Open ]]
},
WindowSize->{919, 637},
WindowMargins->{{140, Automatic}, {Automatic, 11}},
Magnification:>1.4 Inherited,
FrontEndVersion->"10.0 for Microsoft Windows (32-bit) (July 1, 2014)",
StyleDefinitions->"Default.nb"
]
(* End of Notebook Content *)
(* Internal cache information *)
(*CellTagsOutline
CellTagsIndex->{}
*)
(*CellTagsIndex
CellTagsIndex->{}
*)
(*NotebookFileOutline
Notebook[{
Cell[CellGroupData[{
Cell[580, 22, 403, 10, 96, "Input"],
Cell[986, 34, 268, 8, 60, "Output"]
}, Open ]],
Cell[CellGroupData[{
Cell[1291, 47, 259, 7, 42, "Input"],
Cell[1553, 56, 13229, 227, 366, "Output"]
}, Open ]],
Cell[CellGroupData[{
Cell[14819, 288, 374, 13, 82, "Input"],
Cell[15196, 303, 88, 1, 41, "Output"]
}, Open ]],
Cell[CellGroupData[{
Cell[15321, 309, 213, 6, 80, "Input"],
Cell[15537, 317, 120, 3, 60, "Output"]
}, Open ]],
Cell[CellGroupData[{
Cell[15694, 325, 172, 4, 68, "Input"],
Cell[15869, 331, 246, 8, 60, "Output"]
}, Open ]],
Cell[CellGroupData[{
Cell[16152, 344, 374, 13, 82, "Input"],
Cell[16529, 359, 89, 1, 41, "Output"]
}, Open ]],
Cell[CellGroupData[{
Cell[16655, 365, 211, 6, 80, "Input"],
Cell[16869, 373, 121, 3, 60, "Output"]
}, Open ]],
Cell[CellGroupData[{
Cell[17027, 381, 122, 2, 42, "Input"],
Cell[17152, 385, 248, 8, 60, "Output"]
}, Open ]],
Cell[CellGroupData[{
Cell[17437, 398, 503, 17, 76, "Input"],
Cell[17943, 417, 118, 2, 41, "Output"]
}, Open ]],
Cell[CellGroupData[{
Cell[18098, 424, 224, 7, 68, "Input"],
Cell[18325, 433, 90, 1, 41, "Output"]
}, Open ]],
Cell[CellGroupData[{
Cell[18452, 439, 211, 6, 80, "Input"],
Cell[18666, 447, 120, 3, 60, "Output"]
}, Open ]],
Cell[CellGroupData[{
Cell[18823, 455, 124, 2, 42, "Input"],
Cell[18950, 459, 250, 8, 60, "Output"]
}, Open ]],
Cell[CellGroupData[{
Cell[19237, 472, 378, 13, 82, "Input"],
Cell[19618, 487, 106, 2, 41, "Output"]
}, Open ]],
Cell[CellGroupData[{
Cell[19761, 494, 235, 7, 80, "Input"],
Cell[19999, 503, 122, 3, 60, "Output"]
}, Open ]],
Cell[CellGroupData[{
Cell[20158, 511, 122, 2, 42, "Input"],
Cell[20283, 515, 248, 8, 60, "Output"]
}, Open ]],
Cell[CellGroupData[{
Cell[20568, 528, 378, 13, 82, "Input"],
Cell[20949, 543, 108, 2, 41, "Output"]
}, Open ]],
Cell[CellGroupData[{
Cell[21094, 550, 235, 7, 80, "Input"],
Cell[21332, 559, 121, 3, 60, "Output"]
}, Open ]],
Cell[CellGroupData[{
Cell[21490, 567, 122, 2, 42, "Input"],
Cell[21615, 571, 250, 8, 60, "Output"]
}, Open ]],
Cell[CellGroupData[{
Cell[21902, 584, 380, 13, 82, "Input"],
Cell[22285, 599, 107, 2, 41, "Output"]
}, Open ]],
Cell[CellGroupData[{
Cell[22429, 606, 238, 7, 80, "Input"],
Cell[22670, 615, 124, 3, 60, "Output"]
}, Open ]],
Cell[CellGroupData[{
Cell[22831, 623, 124, 2, 42, "Input"],
Cell[22958, 627, 251, 8, 60, "Output"]
}, Open ]],
Cell[CellGroupData[{
Cell[23246, 640, 382, 13, 82, "Input"],
Cell[23631, 655, 108, 2, 41, "Output"]
}, Open ]],
Cell[CellGroupData[{
Cell[23776, 662, 237, 7, 80, "Input"],
Cell[24016, 671, 122, 3, 60, "Output"]
}, Open ]],
Cell[CellGroupData[{
Cell[24175, 679, 122, 2, 42, "Input"],
Cell[24300, 683, 254, 8, 60, "Output"]
}, Open ]],
Cell[CellGroupData[{
Cell[24591, 696, 382, 13, 82, "Input"],
Cell[24976, 711, 93, 1, 41, "Output"]
}, Open ]],
Cell[CellGroupData[{
Cell[25106, 717, 240, 7, 80, "Input"],
Cell[25349, 726, 124, 3, 60, "Output"]
}, Open ]],
Cell[CellGroupData[{
Cell[25510, 734, 120, 2, 42, "Input"],
Cell[25633, 738, 252, 8, 60, "Output"]
}, Open ]],
Cell[CellGroupData[{
Cell[25922, 751, 382, 13, 82, "Input"],
Cell[26307, 766, 93, 1, 41, "Output"]
}, Open ]],
Cell[CellGroupData[{
Cell[26437, 772, 79, 2, 68, "Input"],
Cell[26519, 776, 124, 3, 60, "Output"]
}, Open ]],
Cell[CellGroupData[{
Cell[26680, 784, 129, 4, 68, "Input"],
Cell[26812, 790, 90, 1, 41, "Output"]
}, Open ]],
Cell[CellGroupData[{
Cell[26939, 796, 155, 5, 68, "Input"],
Cell[27097, 803, 115, 1, 41, "Output"]
}, Open ]],
Cell[CellGroupData[{
Cell[27249, 809, 79, 2, 68, "Input"],
Cell[27331, 813, 122, 3, 60, "Output"]
}, Open ]],
Cell[CellGroupData[{