You signed in with another tab or window. Reload to refresh your session.You signed out in another tab or window. Reload to refresh your session.You switched accounts on another tab or window. Reload to refresh your session.Dismiss alert
问题描述1:可以使用dag发起homo_nn 和 hetero_nn的训练流程吗?如果能发起,可不可以传一些dag案例作为参考?
问题描述2:下面dag发起test_nn_binary流程,运行到homo_nn_0组件时就报错“list indices must be integers or slices, not str”,应该怎么修改dag文件呢?
附1:报错内容:
File "/data/projects/fate/fate/python/fate/components/components/nn/loader.py", line 165, in from_dict
166
module_name=data_dict["module_name"],
167
TypeError: list indices must be integers or slices, not str
问题描述1:可以使用dag发起homo_nn 和 hetero_nn的训练流程吗?如果能发起,可不可以传一些dag案例作为参考?
问题描述2:下面dag发起test_nn_binary流程,运行到homo_nn_0组件时就报错“list indices must be integers or slices, not str”,应该怎么修改dag文件呢?
附1:报错内容:
File "/data/projects/fate/fate/python/fate/components/components/nn/loader.py", line 165, in from_dict
166
module_name=data_dict["module_name"],
167
TypeError: list indices must be integers or slices, not str
附2:dag内容
dag:
stage: train
party_tasks:
host_9999:
parties:
- role: host
party_id:
- '9999'
tasks:
reader_0:
parameters:
name: breast_homo_host
namespace: experiment
guest_10000:
parties:
- role: guest
party_id:
- '10000'
tasks:
reader_0:
parameters:
name: breast_homo_guest
namespace: experiment
parties:
party_id:
party_id:
tasks:
reader_0:
stage: default
parties:
party_id:
party_id:
component_ref: reader
homo_nn_1:
inputs:
data:
train_data:
task_output_artifact:
output_artifact_key: output_data
producer_task: reader_0
model:
warm_start_model:
task_output_artifact:
output_artifact_key: output_model
producer_task: homo_nn_0
component_ref: homo_nn
dependent_tasks:
parameters: {}
homo_nn_0:
inputs:
data:
train_data:
task_output_artifact:
output_artifact_key: output_data
producer_task: reader_0
model: {}
component_ref: homo_nn
dependent_tasks:
parameters:
runner_conf:
training_args_conf:
num_train_epochs: 5
per_device_train_batch_size: 64
loss_conf: BCELoss
optimizer_conf:
lr: 0.01
type: Adam
model_conf:
out_features: 16
type: Linear
out_features: 1
type: Linear
type: Sequential
task_type: binary
algo: fedavg
evaluation_0:
stage: default
inputs:
data:
input_datas:
task_output_artifact:
output_artifact_key: output_data
producer_task: homo_nn_1
component_ref: evaluation
dependent_tasks:
parameters:
metrics:
The text was updated successfully, but these errors were encountered: