-
Notifications
You must be signed in to change notification settings - Fork 2
/
wide_resnet_flc.py
130 lines (112 loc) · 5.12 KB
/
wide_resnet_flc.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
""" Generic Class for Wide ResNet with FLC Pooling
Based on code from https://github.com/yaodongyu/TRADES """
import math
import torch
import torch.nn as nn
import torch.nn.functional as F
from flc_pooling import FLC_Pooling
class BasicBlock(nn.Module):
def __init__(self, in_planes, out_planes, stride, dropRate=0.0, cutoff=[8,24,4,12,2,6]):
super(BasicBlock, self).__init__()
self.bn1 = nn.BatchNorm2d(in_planes)
self.relu1 = nn.ReLU(inplace=True)
if stride == 1:
self.conv1 = nn.Conv2d(in_planes, out_planes, kernel_size=3, stride=1,
padding=1, bias=False)
else:
self.conv1 = nn.Sequential(
FLC_Pooling(),
nn.Conv2d(in_planes, out_planes, kernel_size=3, stride=1,
padding=1, bias=False)
)
self.bn2 = nn.BatchNorm2d(out_planes)
self.relu2 = nn.ReLU(inplace=True)
self.conv2 = nn.Conv2d(out_planes, out_planes, kernel_size=3, stride=1,
padding=1, bias=False)
self.droprate = dropRate
self.equalInOut = (in_planes == out_planes)
if not self.equalInOut:
if stride == 1:
self.convShortcut = nn.Conv2d(in_planes, out_planes, kernel_size=1, stride=1, padding=0, bias=False)
else:
self.convShortcut = nn.Sequential(
FLC_Pooling(),
nn.Conv2d(in_planes, out_planes, kernel_size=1, stride=1, padding=0, bias=False)
)
else:
self.convShortcut = None
def forward(self, x):
if not self.equalInOut:
x = self.relu1(self.bn1(x))
else:
out = self.relu1(self.bn1(x))
out = self.relu2(self.bn2(self.conv1(out if self.equalInOut else x)))
if self.droprate > 0:
out = F.dropout(out, p=self.droprate, training=self.training)
out = self.conv2(out)
return torch.add(x if self.equalInOut else self.convShortcut(x), out)
class NetworkBlock(nn.Module):
def __init__(self, nb_layers, in_planes, out_planes, block, stride, dropRate=0.0):
super(NetworkBlock, self).__init__()
self.layer = self._make_layer(block, in_planes, out_planes, nb_layers, stride, dropRate)
def _make_layer(self, block, in_planes, out_planes, nb_layers, stride, dropRate):
layers = []
for i in range(int(nb_layers)):
layers.append(block(i == 0 and in_planes or out_planes, out_planes, i == 0 and stride or 1, dropRate))
return nn.Sequential(*layers)
def forward(self, x):
return self.layer(x)
class WideResNet(nn.Module):
def __init__(self, depth=28, num_classes=10, widen_factor=10, sub_block1=False, dropRate=0.0, bias_last=True):
super(WideResNet, self).__init__()
nChannels = [16, 16 * widen_factor, 32 * widen_factor, 64 * widen_factor]
assert ((depth - 4) % 6 == 0)
n = (depth - 4) / 6
block = BasicBlock
# 1st conv before any network block
self.conv1 = nn.Conv2d(3, nChannels[0], kernel_size=3, stride=1,
padding=1, bias=False)
# 1st block
self.block1 = NetworkBlock(n, nChannels[0], nChannels[1], block, 1, dropRate)
if sub_block1:
# 1st sub-block
self.sub_block1 = NetworkBlock(n, nChannels[0], nChannels[1], block, 1, dropRate)
# 2nd block
self.block2 = NetworkBlock(n, nChannels[1], nChannels[2], block, 2, dropRate)
# 3rd block
self.block3 = NetworkBlock(n, nChannels[2], nChannels[3], block, 2, dropRate)
# global average pooling and classifier
self.bn1 = nn.BatchNorm2d(nChannels[3])
self.relu = nn.ReLU(inplace=True)
self.fc = nn.Linear(nChannels[3], num_classes, bias=bias_last)
self.nChannels = nChannels[3]
for m in self.modules():
if isinstance(m, nn.Conv2d):
n = m.kernel_size[0] * m.kernel_size[1] * m.out_channels
m.weight.data.normal_(0, math.sqrt(2. / n))
elif isinstance(m, nn.BatchNorm2d):
m.weight.data.fill_(1)
m.bias.data.zero_()
elif isinstance(m, nn.Linear) and not m.bias is None:
m.bias.data.zero_()
def forward(self, x):
out = self.conv1(x)
out = self.block1(out)
out = self.block2(out)
out = self.block3(out)
out = self.relu(self.bn1(out))
out = F.avg_pool2d(out, 8)
out = out.view(-1, self.nChannels)
return self.fc(out)
class WRN_normalized(WideResNet):
def __init__(self, device='cuda'):
super(WRN_normalized, self).__init__()
self.mu = torch.Tensor([0.4914, 0.4822, 0.4465]).float().view(3, 1, 1).to(device)
self.sigma = torch.Tensor([0.2471, 0.2435, 0.2616]).float().view(3, 1, 1).to(device)
def forward(self, x):
x = (x - self.mu) / self.sigma
return super(WRN_normalized, self).forward(x)
def WideResNet2810_normalized(device='cuda'):
return WRN_normalized(device=device)
def WideResNet2810(device='cuda'):
return WideResNet()