-
Notifications
You must be signed in to change notification settings - Fork 2
/
train.py
218 lines (175 loc) · 7.47 KB
/
train.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
import hf_env
hf_env.set_env("202111")
import os
import time
import argparse
import numpy as np
from pathlib import Path
import torch
from torch.nn.parallel import DistributedDataParallel
import hfai
import hfai.nccl.distributed as dist
from torch.multiprocessing import Process
hfai.client.bind_hf_except_hook(Process)
from datasets import get_dataloader
from models import Informer, InformerStack, Autoformer
###########################################
# CONFIG
###########################################
parser = argparse.ArgumentParser(description="Train LTSF Formers")
parser.add_argument("--ds", type=str, default="ETTh1", help="dataset name")
parser.add_argument("--model", type=str, default="informer", help="former model")
parser.add_argument("--epochs", type=int, default=100, help="training epoch")
parser.add_argument("--bs", type=int, default=64, help="batch size")
parser.add_argument("--n_workers", type=int, default=8, help="num of workers")
parser.add_argument("--lr", type=float, default=0.0001, help="learning rate")
parser.add_argument("--seq_len", type=int, default=96, help="sequence length")
parser.add_argument("--label_len", type=int, default=48, help="label sequence length")
parser.add_argument("--pred_len", type=int, default=48, help="prediction length")
parser.add_argument("--feature", type=str, default='S', help="prediction mode")
args = parser.parse_args()
# 超参数设置
epochs = args.epochs
batch_size = args.bs
num_workers = args.n_workers
lr = args.lr
data_name = args.ds
seq_len = args.seq_len
label_len = args.label_len
pred_len = args.pred_len
features = args.feature
model_name = args.model
save_path = Path(f"output/{data_name}/{model_name}")
save_path.mkdir(exist_ok=True, parents=True)
best_mse = np.inf
def process_one_batch(model, standard_scaler, batch_x, batch_y, batch_x_mark, batch_y_mark):
x = batch_x.float().cuda(non_blocking=True)
x_mark = batch_x_mark.float().cuda(non_blocking=True)
y_mark = batch_y_mark.float().cuda(non_blocking=True)
# decoder input
dec_inp = torch.zeros([batch_y.shape[0], pred_len, batch_y.shape[-1]]).float()
dec_inp = torch.cat([batch_y[:, : label_len, :], dec_inp], dim=1).float().cuda(non_blocking=True)
# encoder - decoder
outputs = model(x, x_mark, dec_inp, y_mark)
y_pred = standard_scaler.inverse_transform(outputs)
f_dim = -1 if features == "MS" else 0
y_true = batch_y[:, pred_len:, f_dim:].float().cuda(non_blocking=True)
return y_pred, y_true
def train_one_epoch(epoch, start_step, model, train_loader, optimizer, criterion, standard_scaler):
model.train()
for step, (batch_x, batch_y, batch_x_mark, batch_y_mark) in enumerate(train_loader):
if step < start_step:
continue
optimizer.zero_grad()
y_pred, y_true = process_one_batch(model, standard_scaler, batch_x, batch_y, batch_x_mark, batch_y_mark)
loss = criterion(y_pred, y_true)
loss.backward()
optimizer.step()
# 收到打断信号,保存模型,设置当前执行的状态信息
rank = dist.get_rank()
if rank == 0 and hfai.receive_suspend_command():
state = {
"model": model.module.state_dict(),
"optimizer": optimizer.state_dict(),
"epoch": epoch,
"step": step,
"best_mse": best_mse,
}
torch.save(state, save_path / "latest.tar")
time.sleep(5)
hfai.go_suspend()
def eval(model, criterion, eval_loader, standard_scaler):
loss, total = torch.zeros(2).cuda()
model.eval()
with torch.no_grad():
for _, (batch_x, batch_y, batch_x_mark, batch_y_mark) in enumerate(eval_loader):
y_pred, y_true = process_one_batch(model, standard_scaler, batch_x, batch_y, batch_x_mark, batch_y_mark)
loss += criterion(y_pred, y_true)
total += y_true.size(0)
for x in [loss, total]:
dist.reduce(x, 0)
loss_val = 0
if dist.get_rank() == 0:
loss_val = loss.item() / total.item()
return loss_val
def fit(model, optimizer, criterion, train_loader, val_loader, standard_scaler=None):
global best_mse
if standard_scaler is None:
raise RuntimeError("The standard scaler is None.")
rank = dist.get_rank()
# 如果模型存在checkpoint
start_epoch, start_step = 0, 0
if Path(save_path / "latest.tar").exists():
ckpt = torch.load(save_path / "latest.tar", map_location="cpu")
model.module.load_state_dict(ckpt["model"])
optimizer.load_state_dict(ckpt["optimizer"])
start_epoch = ckpt["epoch"]
start_step = ckpt["step"]
best_mse = ckpt["best_mse"]
# 训练、验证
for epoch in range(start_epoch, epochs):
train_loader.sampler.set_epoch(epoch)
train_one_epoch(epoch, start_step, model, train_loader, optimizer, criterion, standard_scaler)
train_loss = eval(model, criterion, train_loader, standard_scaler)
val_loss = eval(model, criterion, val_loader, standard_scaler)
# 保存
if rank == 0:
print(f"Epoch: {epoch}, train_loss: {train_loss:.4f}, val_loss: {val_loss:.4f}")
if val_loss < best_mse:
best_mse = val_loss
print(f"New Best MSE: {best_mse:.4f}!")
torch.save(model.module.state_dict(), save_path / "best.pt")
torch.cuda.empty_cache()
def main(local_rank):
# 多机通信
ip = os.environ.get("MASTER_ADDR", '127.0.0.1')
port = os.environ.get("MASTER_PORT", '8899')
hosts = int(os.environ.get("WORLD_SIZE", '1')) # 机器个数
rank = int(os.environ.get("RANK", '0')) # 当前机器编号
gpus = torch.cuda.device_count() # 每台机器的GPU个数
# world_size是全局GPU个数,rank是当前GPU全局编号
dist.init_process_group(
backend="nccl", init_method=f"tcp://{ip}:{port}", world_size=hosts * gpus, rank=rank * gpus + local_rank
)
torch.cuda.set_device(local_rank)
train_loader, standard_scaler, encoder_dim, decoder_dim, output_dim = get_dataloader(data_name, seq_len, label_len, pred_len, features, batch_size, num_workers, mode='train')
val_loader, _, _, _, _ = get_dataloader(data_name, seq_len, label_len, pred_len, features, batch_size, num_workers, mode='val')
if model_name == 'autoformer':
model = Autoformer(
enc_in=encoder_dim,
dec_in=decoder_dim,
c_out=output_dim,
seq_len=seq_len,
label_len=label_len,
out_len=pred_len,
e_layers=2,
d_layers=1,
d_ff=2048,
factor=3,
dropout=0.05,
embed="timeF"
)
elif model_name == 'informer':
model = Informer(
enc_in=encoder_dim,
dec_in=decoder_dim,
c_out=output_dim,
seq_len=seq_len,
label_len=label_len,
out_len=pred_len,
e_layers=2,
d_layers=1,
d_ff=2048,
factor=3,
dropout=0.05,
embed="timeF"
)
else:
raise KeyError(f'{model_name} cannot be implemented')
model = DistributedDataParallel(model.cuda(), device_ids=[local_rank])
optimizer = torch.optim.Adam(model.parameters(), lr=lr)
criterion = torch.nn.MSELoss()
fit(model, optimizer, criterion, train_loader, val_loader, standard_scaler)
if __name__ == "__main__":
ngpus = torch.cuda.device_count()
torch.multiprocessing.spawn(main, args=(), nprocs=ngpus)