-
Notifications
You must be signed in to change notification settings - Fork 1
/
line_counter_tomatoes.py
284 lines (245 loc) · 9.86 KB
/
line_counter_tomatoes.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
from typing import Dict
import cv2
import numpy as np
from supervision.detection.core import Detections
from supervision.draw.color import Color
from supervision.geometry.core import Point, Rect, Vector
class LineZone:
"""
Count the number of objects that cross a line.
"""
def __init__(self, start: Point, end: Point):
"""
Initialize a LineCounter object.
Attributes:
start (Point): The starting point of the line.
end (Point): The ending point of the line.
"""
self.vector = Vector(start=start, end=end)
self.tracker_state: Dict[str, bool] = {}
self.in_count_ripen: int = 0
self.out_count_ripen: int = 0
self.in_count_semiripe: int = 0
self.out_count_semiripe: int = 0
self.in_count_unripe: int = 0
self.out_count_unripe: int = 0
def trigger(self, detections: Detections):
"""
Update the in_count and out_count for the detections that cross the line.
Attributes:
detections (Detections): The detections for which to update the counts.
"""
for xyxy, confidence, class_id, tracker_id in detections:
# handle detections with no tracker_id
if tracker_id is None:
continue
if class_id == 0:
# we check if all four anchors of bbox are on the same side of vector
x1, y1, x2, y2 = xyxy
anchors = [
Point(x=(x1+x2)//2, y=(y1+y2)//2)
]
triggers = [self.vector.is_in(point=anchor) for anchor in anchors]
# detection is partially in and partially out
if len(set(triggers)) == 2:
continue
tracker_state = triggers[0]
# handle new detection
if tracker_id not in self.tracker_state:
self.tracker_state[tracker_id] = tracker_state
continue
# handle detection on the same side of the line
if self.tracker_state.get(tracker_id) == tracker_state:
continue
self.tracker_state[tracker_id] = tracker_state
if tracker_state:
self.in_count_ripen += 1
else:
self.out_count_ripen += 1
elif class_id == 1:
# we check if all four anchors of bbox are on the same side of vector
x1, y1, x2, y2 = xyxy
anchors = [
Point(x=(x1+x2)//2, y=(y1+y2)//2)
]
triggers = [self.vector.is_in(point=anchor) for anchor in anchors]
# detection is partially in and partially out
if len(set(triggers)) == 2:
continue
tracker_state = triggers[0]
# handle new detection
if tracker_id not in self.tracker_state:
self.tracker_state[tracker_id] = tracker_state
continue
# handle detection on the same side of the line
if self.tracker_state.get(tracker_id) == tracker_state:
continue
self.tracker_state[tracker_id] = tracker_state
if tracker_state:
self.in_count_semiripe += 1
else:
self.out_count_semiripe += 1
elif class_id == 2:
# we check if all four anchors of bbox are on the same side of vector
x1, y1, x2, y2 = xyxy
# anchors = [
# Point(x=x1, y=y1),
# Point(x=x1, y=y2),
# Point(x=x2, y=y1),
# Point(x=x2, y=y2),
# ]
anchors = [
Point(x=(x1+x2)//2, y=(y1+y2)//2)
]
triggers = [self.vector.is_in(point=anchor) for anchor in anchors]
# detection is partially in and partially out
if len(set(triggers)) == 2:
continue
tracker_state = triggers[0]
# handle new detection
if tracker_id not in self.tracker_state:
self.tracker_state[tracker_id] = tracker_state
continue
# handle detection on the same side of the line
if self.tracker_state.get(tracker_id) == tracker_state:
continue
self.tracker_state[tracker_id] = tracker_state
if tracker_state:
self.in_count_unripe += 1
else:
self.out_count_unripe += 1
class LineZoneAnnotator:
def __init__(
self,
thickness: float = 2,
color: Color = Color.white(),
text_thickness: float = 2,
text_color: Color = Color.black(),
text_scale: float = 0.5,
text_offset: float = 1.5,
text_padding: int = 10,
):
"""
Initialize the LineCounterAnnotator object with default values.
Attributes:
thickness (float): The thickness of the line that will be drawn.
color (Color): The color of the line that will be drawn.
text_thickness (float): The thickness of the text that will be drawn.
text_color (Color): The color of the text that will be drawn.
text_scale (float): The scale of the text that will be drawn.
text_offset (float): The offset of the text that will be drawn.
text_padding (int): The padding of the text that will be drawn.
"""
self.thickness: float = thickness
self.color: Color = color
self.text_thickness: float = text_thickness
self.text_color: Color = text_color
self.text_scale: float = text_scale
self.text_offset: float = text_offset
self.text_padding: int = text_padding
def annotate(self, frame: np.ndarray, line_counter: LineZone) -> np.ndarray:
"""
Draws the line on the frame using the line_counter provided.
Attributes:
frame (np.ndarray): The image on which the line will be drawn.
line_counter (LineCounter): The line counter that will be used to draw the line.
Returns:
np.ndarray: The image with the line drawn on it.
"""
cv2.line(
frame,
line_counter.vector.start.as_xy_int_tuple(),
line_counter.vector.end.as_xy_int_tuple(),
self.color.as_bgr(),
self.thickness,
lineType=cv2.LINE_AA,
shift=0,
)
cv2.circle(
frame,
line_counter.vector.start.as_xy_int_tuple(),
radius=5,
color=self.text_color.as_bgr(),
thickness=-1,
lineType=cv2.LINE_AA,
)
cv2.circle(
frame,
line_counter.vector.end.as_xy_int_tuple(),
radius=5,
color=self.text_color.as_bgr(),
thickness=-1,
lineType=cv2.LINE_AA,
)
in_ripen_text = f"in ripen: {line_counter.in_count_ripen}, semiripe: {line_counter.in_count_semiripe}, unripe: {line_counter.in_count_unripe}"
out_ripen_text = f"out ripen: {line_counter.out_count_ripen}, semiripe: {line_counter.out_count_semiripe}, unripe: {line_counter.out_count_unripe}"
(in_text_width, in_text_height), _ = cv2.getTextSize(
in_ripen_text, cv2.FONT_HERSHEY_SIMPLEX, self.text_scale, self.text_thickness
)
(out_text_width, out_text_height), _ = cv2.getTextSize(
out_ripen_text, cv2.FONT_HERSHEY_SIMPLEX, self.text_scale, self.text_thickness
)
in_text_x = int(
(line_counter.vector.end.x + line_counter.vector.start.x - in_text_width)
/ 2
)
in_text_y = int(
(line_counter.vector.end.y + line_counter.vector.start.y + in_text_height)
/ 2
- self.text_offset * in_text_height
)
out_text_x = int(
(line_counter.vector.end.x + line_counter.vector.start.x - out_text_width)
/ 2
)
out_text_y = int(
(line_counter.vector.end.y + line_counter.vector.start.y + out_text_height)
/ 2
+ self.text_offset * out_text_height
)
in_text_background_rect = Rect(
x=in_text_x,
y=in_text_y - in_text_height,
width=in_text_width,
height=in_text_height,
).pad(padding=self.text_padding)
out_text_background_rect = Rect(
x=out_text_x,
y=out_text_y - out_text_height,
width=out_text_width,
height=out_text_height,
).pad(padding=self.text_padding)
# cv2.rectangle(
# frame,
# in_text_background_rect.top_left.as_xy_int_tuple(),
# in_text_background_rect.bottom_right.as_xy_int_tuple(),
# self.color.as_bgr(),
# -1,
# )
# cv2.rectangle(
# frame,
# out_text_background_rect.top_left.as_xy_int_tuple(),
# out_text_background_rect.bottom_right.as_xy_int_tuple(),
# self.color.as_bgr(),
# -1,
# )
# cv2.putText(
# frame,
# in_ripen_text,
# (in_text_x, in_text_y),
# cv2.FONT_HERSHEY_SIMPLEX,
# self.text_scale,
# self.text_color.as_bgr(),
# self.text_thickness,
# cv2.LINE_AA,
# )
# cv2.putText(
# frame,
# out_ripen_text,
# (out_text_x, out_text_y),
# cv2.FONT_HERSHEY_SIMPLEX,
# self.text_scale,
# self.text_color.as_bgr(),
# self.text_thickness,
# cv2.LINE_AA,
# )