This repository has been archived by the owner on Jul 18, 2024. It is now read-only.
-
Notifications
You must be signed in to change notification settings - Fork 23
/
l2_attack.py
274 lines (233 loc) · 12.8 KB
/
l2_attack.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
## l2_attack.py -- attack a network optimizing for l_2 distance
##
## Copyright (C) IBM Corp, 2017-2018
## Copyright (C) 2016, Nicholas Carlini <[email protected]>.
##
## This program is licenced under the BSD 2-Clause licence,
## contained in the LICENCE file in this directory.
import sys
import tensorflow as tf
import numpy as np
import time
BINARY_SEARCH_STEPS = 1 # number of times to adjust the constant with binary search
MAX_ITERATIONS = 10000 # number of iterations to perform gradient descent
ABORT_EARLY = True # if we stop improving, abort gradient descent early
LEARNING_RATE = 2e-3 # larger values converge faster to less accurate results
TARGETED = True # should we target one specific class? or just be wrong?
CONFIDENCE = 0 # how strong the adversarial example should be
INITIAL_CONST = 0.01 # the initial constant c to pick as a first guess
class CarliniL2:
def __init__(self, sess, model, batch_size=1, confidence = CONFIDENCE,
targeted = TARGETED, learning_rate = LEARNING_RATE,
binary_search_steps = BINARY_SEARCH_STEPS, max_iterations = MAX_ITERATIONS, print_every = 100, early_stop_iters = 0,
abort_early = ABORT_EARLY,
initial_const = INITIAL_CONST,
use_log = False, adam_beta1 = 0.9, adam_beta2 = 0.999):
"""
The L_2 optimized attack.
This attack is the most efficient and should be used as the primary
attack to evaluate potential defenses.
Returns adversarial examples for the supplied model.
confidence: Confidence of adversarial examples: higher produces examples
that are farther away, but more strongly classified as adversarial.
batch_size: Number of attacks to run simultaneously.
targeted: True if we should perform a targetted attack, False otherwise.
learning_rate: The learning rate for the attack algorithm. Smaller values
produce better results but are slower to converge.
binary_search_steps: The number of times we perform binary search to
find the optimal tradeoff-constant between distance and confidence.
max_iterations: The maximum number of iterations. Larger values are more
accurate; setting too small will require a large learning rate and will
produce poor results.
abort_early: If true, allows early aborts if gradient descent gets stuck.
initial_const: The initial tradeoff-constant to use to tune the relative
importance of distance and confidence. If binary_search_steps is large,
the initial constant is not important.
"""
image_size, num_channels, num_labels = model.image_size, model.num_channels, model.num_labels
self.sess = sess
self.TARGETED = targeted
self.LEARNING_RATE = learning_rate
self.MAX_ITERATIONS = max_iterations
self.print_every = print_every
self.early_stop_iters = early_stop_iters if early_stop_iters != 0 else max_iterations // 10
print("early stop:", self.early_stop_iters)
self.BINARY_SEARCH_STEPS = binary_search_steps
self.ABORT_EARLY = abort_early
self.CONFIDENCE = confidence
self.initial_const = initial_const
self.batch_size = batch_size
self.repeat = binary_search_steps >= 10
shape = (batch_size,image_size,image_size,num_channels)
# the variable we're going to optimize over
self.modifier = tf.Variable(np.zeros(shape,dtype=np.float32))
# self.modifier = tf.Variable(np.load('black_iter_350.npy').astype(np.float32).reshape(shape))
# these are variables to be more efficient in sending data to tf
self.timg = tf.Variable(np.zeros(shape), dtype=tf.float32)
self.tlab = tf.Variable(np.zeros((batch_size,num_labels)), dtype=tf.float32)
self.const = tf.Variable(np.zeros(batch_size), dtype=tf.float32)
# and here's what we use to assign them
self.assign_timg = tf.placeholder(tf.float32, shape)
self.assign_tlab = tf.placeholder(tf.float32, (batch_size,num_labels))
self.assign_const = tf.placeholder(tf.float32, [batch_size])
# the resulting image, tanh'd to keep bounded from -0.5 to 0.5
self.newimg = tf.tanh(self.modifier + self.timg)/2
# prediction BEFORE-SOFTMAX of the model
self.output = model.predict(self.newimg)
# distance to the input data
self.l2dist = tf.reduce_sum(tf.square(self.newimg-tf.tanh(self.timg)/2),[1,2,3])
# compute the probability of the label class versus the maximum other
self.real = tf.reduce_sum((self.tlab)*self.output,1)
self.other = tf.reduce_max((1-self.tlab)*self.output - (self.tlab*10000),1)
if self.TARGETED:
if use_log:
# loss1 = tf.maximum(- tf.log(self.other), - tf.log(self.real))
# loss1 = - tf.log(self.real)
loss1 = tf.maximum(0.0, tf.log(self.other + 1e-30) - tf.log(self.real + 1e-30))
else:
# if targetted, optimize for making the other class most likely
loss1 = tf.maximum(0.0, self.other-self.real+self.CONFIDENCE)
else:
if use_log:
# loss1 = tf.log(self.real)
loss1 = tf.maximum(0.0, tf.log(self.real + 1e-30) - tf.log(self.other + 1e-30))
else:
# if untargeted, optimize for making this class least likely.
loss1 = tf.maximum(0.0, self.real-self.other+self.CONFIDENCE)
# sum up the losses
self.loss2 = tf.reduce_sum(self.l2dist)
self.loss1 = tf.reduce_sum(self.const*loss1)
self.loss = self.loss1+self.loss2
# Setup the adam optimizer and keep track of variables we're creating
start_vars = set(x.name for x in tf.global_variables())
# optimizer = tf.train.GradientDescentOptimizer(self.LEARNING_RATE)
# optimizer = tf.train.MomentumOptimizer(self.LEARNING_RATE, 0.99)
# optimizer = tf.train.RMSPropOptimizer(self.LEARNING_RATE)
# optimizer = tf.train.AdadeltaOptimizer(self.LEARNING_RATE)
optimizer = tf.train.AdamOptimizer(self.LEARNING_RATE, adam_beta1, adam_beta2)
self.train = optimizer.minimize(self.loss, var_list=[self.modifier])
end_vars = tf.global_variables()
new_vars = [x for x in end_vars if x.name not in start_vars]
# these are the variables to initialize when we run
self.setup = []
self.setup.append(self.timg.assign(self.assign_timg))
self.setup.append(self.tlab.assign(self.assign_tlab))
self.setup.append(self.const.assign(self.assign_const))
# self.grad_op = tf.gradients(self.loss, self.modifier)
self.init = tf.variables_initializer(var_list=[self.modifier]+new_vars)
def attack(self, imgs, targets):
"""
Perform the L_2 attack on the given images for the given targets.
If self.targeted is true, then the targets represents the target labels.
If self.targeted is false, then targets are the original class labels.
"""
r = []
print('go up to',len(imgs))
for i in range(0,len(imgs),self.batch_size):
print('tick',i)
r.extend(self.attack_batch(imgs[i:i+self.batch_size], targets[i:i+self.batch_size])[0])
return np.array(r)
def attack_batch(self, imgs, labs):
"""
Run the attack on a batch of images and labels.
"""
def compare(x,y):
if not isinstance(x, (float, int, np.int64)):
x = np.copy(x)
if self.TARGETED:
x[y] -= self.CONFIDENCE
else:
x[y] += self.CONFIDENCE
x = np.argmax(x)
if self.TARGETED:
return x == y
else:
return x != y
batch_size = self.batch_size
# convert to tanh-space
imgs = np.arctanh(imgs*1.999999)
# set the lower and upper bounds accordingly
lower_bound = np.zeros(batch_size)
CONST = np.ones(batch_size)*self.initial_const
upper_bound = np.ones(batch_size)*1e10
# the best l2, score, and image attack
o_bestl2 = [1e10]*batch_size
o_bestscore = [-1]*batch_size
o_bestattack = [np.zeros(imgs[0].shape)]*batch_size
o_best_const = [self.initial_const]*batch_size
for outer_step in range(self.BINARY_SEARCH_STEPS):
print("current best l2", o_bestl2)
# completely reset adam's internal state.
self.sess.run(self.init)
batch = imgs[:batch_size]
batchlab = labs[:batch_size]
bestl2 = [1e10]*batch_size
bestscore = [-1]*batch_size
# The last iteration (if we run many steps) repeat the search once.
if self.repeat == True and outer_step == self.BINARY_SEARCH_STEPS-1:
CONST = upper_bound
# set the variables so that we don't have to send them over again
self.sess.run(self.setup, {self.assign_timg: batch,
self.assign_tlab: batchlab,
self.assign_const: CONST})
prev = 1e6
train_timer = 0.0
for iteration in range(self.MAX_ITERATIONS):
# print out the losses every 10%
if iteration%(self.MAX_ITERATIONS//self.print_every) == 0:
# print(iteration,self.sess.run((self.loss,self.real,self.other,self.loss1,self.loss2)))
# grad = self.sess.run(self.grad_op)
# old_modifier = self.sess.run(self.modifier)
# np.save('white_iter_{}'.format(iteration), modifier)
loss, real, other, loss1, loss2 = self.sess.run((self.loss,self.real,self.other,self.loss1,self.loss2))
print("[STATS][L2] iter = {}, time = {:.3f}, loss = {:.5g}, real = {:.5g}, other = {:.5g}, loss1 = {:.5g}, loss2 = {:.5g}".format(iteration, train_timer, loss, real[0], other[0], loss1, loss2))
sys.stdout.flush()
attack_begin_time = time.time()
# perform the attack
_, l, l2s, scores, nimg = self.sess.run([self.train, self.loss,
self.l2dist, self.output,
self.newimg])
new_modifier = self.sess.run(self.modifier)
# print(grad[0].reshape(-1))
# print((old_modifier - new_modifier).reshape(-1))
# check if we should abort search if we're getting nowhere.
if self.ABORT_EARLY and iteration % self.early_stop_iters == 0:
if l > prev*.9999:
print("Early stopping because there is no improvement")
break
prev = l
# adjust the best result found so far
for e,(l2,sc,ii) in enumerate(zip(l2s,scores,nimg)):
if l2 < bestl2[e] and compare(sc, np.argmax(batchlab[e])):
bestl2[e] = l2
bestscore[e] = np.argmax(sc)
if l2 < o_bestl2[e] and compare(sc, np.argmax(batchlab[e])):
o_bestl2[e] = l2
o_bestscore[e] = np.argmax(sc)
o_bestattack[e] = ii
o_best_const[e] = CONST[e]
train_timer += time.time() - attack_begin_time
# adjust the constant as needed
for e in range(batch_size):
if compare(bestscore[e], np.argmax(batchlab[e])) and bestscore[e] != -1:
# modifier = self.sess.run(self.modifier)
# np.save("best.model", modifier)
print('old constant: ', CONST[e])
# success, divide const by two
upper_bound[e] = min(upper_bound[e],CONST[e])
if upper_bound[e] < 1e9:
CONST[e] = (lower_bound[e] + upper_bound[e])/2
print('new constant: ', CONST[e])
else:
print('old constant: ', CONST[e])
# failure, either multiply by 10 if no solution found yet
# or do binary search with the known upper bound
lower_bound[e] = max(lower_bound[e],CONST[e])
if upper_bound[e] < 1e9:
CONST[e] = (lower_bound[e] + upper_bound[e])/2
else:
CONST[e] *= 10
print('new constant: ', CONST[e])
# return the best solution found
o_bestl2 = np.array(o_bestl2)
return np.array(o_bestattack), o_best_const