This repository has been archived by the owner on Jul 22, 2024. It is now read-only.
-
Notifications
You must be signed in to change notification settings - Fork 21
/
models.py
488 lines (397 loc) · 18.8 KB
/
models.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
import torch
import torch.nn as nn
import torch.nn.functional as F
import numpy as np
from utils.generic import masked_softmax
def emb_layer(keyed_vectors, trainable=False):
"""Create an Embedding layer from the supplied gensim keyed_vectors."""
emb_weights = torch.Tensor(keyed_vectors.vectors)
emb = nn.Embedding(*emb_weights.shape)
emb.weight = nn.Parameter(emb_weights)
emb.weight.requires_grad = trainable
return emb
class PretrainedEmbeddings(torch.nn.Module):
def __init__(self,keyed_vectors, trainable = False):
super().__init__()
self.embedding = emb_layer(keyed_vectors, trainable)
oov_vector = torch.tensor(keyed_vectors['<UNK>'].copy(), dtype=torch.float32)
self.dim = oov_vector.shape[0]
# vector for oov
self.oov = torch.nn.Parameter(data=oov_vector)
self.oov_index = -1
def forward(self, arr):
N = arr.shape[0]
items = arr.shape[1]
mask = (arr == self.oov_index).long()
mask_ = mask.unsqueeze(-1).float()
embed = self.embedding((1-mask)*arr)
embed = (1-mask_)*embed + mask_*(self.oov.expand_as(embed))
return embed
class GraphAttentionLayer(nn.Module):
"""
Simple GAT layer, similar to https://arxiv.org/abs/1710.10903
"""
def __init__(self, in_features, out_features, dropout, alpha, concat=True):
super(GraphAttentionLayer, self).__init__()
self.dropout = dropout
self.in_features = in_features
self.out_features = out_features
self.alpha = alpha
self.concat = concat
self.W = nn.Parameter(torch.zeros(size=(in_features, out_features)))
nn.init.xavier_uniform_(self.W.data, gain=1.414)
self.a = nn.Parameter(torch.zeros(size=(2 * out_features, 1)))
nn.init.xavier_uniform_(self.a.data, gain=1.414)
self.leakyrelu = nn.LeakyReLU(self.alpha)
def forward(self, input, adj):
h = torch.matmul(input, self.W)
N = h.size()[1]
batch_size = h.size(0)
a_input = torch.cat([h.repeat(1, 1, N).view(batch_size, N * N, -1), h.repeat(1, N, 1)],
dim=2).view(batch_size, N, -1, 2 * self.out_features)
e = self.leakyrelu(torch.matmul(a_input, self.a).squeeze(3))
zero_vec = -9e15 * torch.ones_like(e)
attention = torch.where(adj > 0, e, zero_vec)
attention = F.softmax(attention, dim=1)
attention = F.dropout(attention, self.dropout, training=self.training)
h_prime = torch.matmul(attention, h)
if self.concat:
return F.elu(h_prime)
else:
return h_prime
def __repr__(self):
return self.__class__.__name__ + ' (' + str(self.in_features) + ' -> ' + str(self.out_features) + ')'
class SpecialSpmmFunction(torch.autograd.Function):
"""Special function for only sparse region backpropataion layer."""
@staticmethod
def forward(ctx, indices, values, shape, b):
assert indices.requires_grad == False
a = torch.sparse_coo_tensor(indices, values, shape)
ctx.save_for_backward(a, b)
ctx.N = shape[0]
return torch.matmul(a, b)
@staticmethod
def backward(ctx, grad_output):
a, b = ctx.saved_tensors
grad_values = grad_b = None
if ctx.needs_input_grad[1]:
grad_a_dense = grad_output.matmul(b.t())
edge_idx = a._indices()[0, :] * ctx.N + a._indices()[1, :]
grad_values = grad_a_dense.view(-1)[edge_idx]
if ctx.needs_input_grad[3]:
grad_b = a.t().matmul(grad_output)
return None, grad_values, None, grad_b
class SpecialSpmm(nn.Module):
def forward(self, indices, values, shape, b):
return SpecialSpmmFunction.apply(indices, values, shape, b)
class SpGraphAttentionLayer(nn.Module):
"""
Sparse version GAT layer, similar to https://arxiv.org/abs/1710.10903
"""
def __init__(self, in_features, out_features, dropout, alpha, concat=True):
super(SpGraphAttentionLayer, self).__init__()
self.in_features = in_features
self.out_features = out_features
self.alpha = alpha
self.concat = concat
self.W = nn.Parameter(torch.zeros(size=(in_features, out_features)))
nn.init.xavier_normal_(self.W.data, gain=1.414)
self.a = nn.Parameter(torch.zeros(size=(1, 2 * out_features)))
nn.init.xavier_normal_(self.a.data, gain=1.414)
self.dropout = nn.Dropout(dropout)
self.leakyrelu = nn.LeakyReLU(self.alpha)
self.special_spmm = SpecialSpmm()
def forward(self, input, adj):
dv = 'cuda' if input.is_cuda else 'cpu'
N = input.size()[0]
edge = adj.nonzero().t()
h = torch.matmul(input, self.W)
# h: N x out
assert not torch.isnan(h).any()
# Self-attention on the nodes - Shared attention mechanism
edge_h = torch.cat((h[edge[0, :], :], h[edge[1, :], :]), dim=1).t()
# edge: 2*D x E
edge_e = torch.exp(-self.leakyrelu(self.a.mm(edge_h).squeeze()))
assert not torch.isnan(edge_e).any()
# edge_e: E
e_rowsum = self.special_spmm(edge, edge_e, torch.Size([N, N]), torch.ones(size=(N, 1), device=dv))
# e_rowsum: N x 1
edge_e = self.dropout(edge_e)
# edge_e: E
h_prime = self.special_spmm(edge, edge_e, torch.Size([N, N]), h)
assert not torch.isnan(h_prime).any()
# h_prime: N x out
h_prime = h_prime.div(e_rowsum)
# h_prime: N x out
assert not torch.isnan(h_prime).any()
if self.concat:
# if this layer is not last layer,
return F.elu(h_prime)
else:
# if this layer is last layer,
return h_prime
def __repr__(self):
return self.__class__.__name__ + ' (' + str(self.in_features) + ' -> ' + str(self.out_features) + ')'
class GAT(nn.Module):
def __init__(self, nfeat, nhid, dropout, alpha, nheads):
super(GAT, self).__init__()
self.dropout = dropout
self.attentions = [GraphAttentionLayer(nfeat, nhid, dropout=dropout, alpha=alpha, concat=True) for _ in
range(nheads)]
for i, attention in enumerate(self.attentions):
self.add_module('attention_{}'.format(i), attention)
def forward(self, x, adj):
x = F.dropout(x, self.dropout, training=self.training)
x = torch.cat([att(x, adj) for att in self.attentions], dim=1)
x = F.dropout(x, self.dropout, training=self.training)
return x
class SpGAT(nn.Module):
def __init__(self, nfeat, nhid, dropout, alpha, nheads):
"""Sparse version of GAT."""
super(SpGAT, self).__init__()
self.dropout = dropout
self.attentions = [SpGraphAttentionLayer(nfeat,
nhid,
dropout=dropout,
alpha=alpha,
concat=True) for _ in range(nheads)]
for i, attention in enumerate(self.attentions):
self.add_module('attention_{}'.format(i), attention)
def forward(self, x, adj):
x = F.dropout(x, self.dropout, training=self.training)
x = torch.cat([att(x, adj) for att in self.attentions], dim=1)
x = F.dropout(x, self.dropout, training=self.training)
return x
class CQAttention(torch.nn.Module):
def __init__(self, block_hidden_dim, dropout=0):
super().__init__()
self.dropout = dropout
w4C = torch.empty(block_hidden_dim, 1)
w4Q = torch.empty(block_hidden_dim, 1)
w4mlu = torch.empty(1, 1, block_hidden_dim)
torch.nn.init.xavier_uniform_(w4C)
torch.nn.init.xavier_uniform_(w4Q)
torch.nn.init.xavier_uniform_(w4mlu)
self.w4C = torch.nn.Parameter(w4C)
self.w4Q = torch.nn.Parameter(w4Q)
self.w4mlu = torch.nn.Parameter(w4mlu)
bias = torch.empty(1)
torch.nn.init.constant_(bias, 0)
self.bias = torch.nn.Parameter(bias)
def forward(self, C, Q, Cmask, Qmask):
S = self.trilinear_for_attention(C, Q)
Cmask = Cmask.unsqueeze(-1)
Qmask = Qmask.unsqueeze(1)
S1 = masked_softmax(S, Qmask, dim=2)
S2 = masked_softmax(S, Cmask, dim=1)
A = torch.bmm(S1, Q)
B = torch.bmm(torch.bmm(S1, S2.transpose(1, 2)), C)
out = torch.cat([C, A, torch.mul(C, A), torch.mul(C, B)], dim=2)
return out
def trilinear_for_attention(self, C, Q):
C = F.dropout(C, p=self.dropout, training=self.training)
Q = F.dropout(Q, p=self.dropout, training=self.training)
max_q_len = Q.size(-2)
max_context_len = C.size(-2)
subres0 = torch.matmul(C, self.w4C).expand([-1, -1, max_q_len])
subres1 = torch.matmul(Q, self.w4Q).transpose(1, 2).expand([-1, max_context_len, -1])
subres2 = torch.matmul(C * self.w4mlu, Q.transpose(1, 2))
res = subres0 + subres1 + subres2
res += self.bias
return res
class ScaledDotProductAttention(torch.nn.Module):
''' Scaled Dot-Product Attention '''
def __init__(self, temperature, dropout=0.1):
super().__init__()
self.temperature = temperature
self.dropout = torch.nn.Dropout(dropout)
def forward(self, q, k, v, mask):
attn = torch.bmm(q, k.transpose(1, 2))
attn = attn / self.temperature
attn = masked_softmax(attn, mask, 2)
attn = self.dropout(attn)
output = torch.bmm(attn, v)
return output, attn
class Attention(nn.Module):
""" Applies attention mechanism on the `context` using the `query`.
**Thank you** to IBM for their initial implementation of :class:`Attention`. Here is
their `License
<https://github.com/IBM/pytorch-seq2seq/blob/master/LICENSE>`__.
Args:
dimensions (int): Dimensionality of the query and context.
attention_type (str, optional): How to compute the attention score:
* dot: :math:`score(H_j,q) = H_j^T q`
* general: :math:`score(H_j, q) = H_j^T W_a q`
Example:
>>> attention = Attention(256)
>>> query = torch.randn(5, 1, 256)
>>> context = torch.randn(5, 5, 256)
>>> output, weights = attention(query, context)
>>> output.size()
torch.Size([5, 1, 256])
>>> weights.size()
torch.Size([5, 1, 5])
"""
def __init__(self, query_dim, context_dim, attention_type='general'):
super(Attention, self).__init__()
if attention_type not in ['dot', 'general']:
raise ValueError('Invalid attention type selected.')
self.attention_type = attention_type
if self.attention_type == 'general':
self.linear_in = nn.Linear(query_dim, query_dim, bias=False)
if query_dim != context_dim:
self.linear_proj = nn.Linear(query_dim, context_dim, bias=False)
self.linear_out = nn.Linear(context_dim * 2, context_dim, bias=False)
self.softmax = nn.Softmax(dim=-1)
self.tanh = nn.Tanh()
def forward(self, query, context):
"""
Args:
query (:class:`torch.FloatTensor` [batch size, output length, dimensions]): Sequence of
queries to query the context.
context (:class:`torch.FloatTensor` [batch size, query length, dimensions]): Data
overwhich to apply the attention mechanism.
Returns:
:class:`tuple` with `output` and `weights`:
* **output** (:class:`torch.LongTensor` [batch size, output length, dimensions]):
Tensor containing the attended features.
* **weights** (:class:`torch.FloatTensor` [batch size, output length, query length]):
Tensor containing attention weights.
"""
batch_size, output_len, query_dim = query.size()
batch_size, query_len, context_dim = context.size()
if self.attention_type == "general":
query = query.reshape(batch_size * output_len, query_dim) # batch x cmds x hidden*2
query = self.linear_in(query)
query = query.reshape(batch_size, output_len, query_dim)
if query_dim != context_dim:
query = self.linear_proj(query) # batch x cmds x hidden
# (batch_size, output_len, dimensions) * (batch_size, query_len, dimensions) ->
# (batch_size, output_len, query_len)
attention_scores = torch.bmm(query, context.transpose(1, 2).contiguous())
# Compute weights across every context sequence
attention_scores = attention_scores.view(batch_size * output_len, query_len)
attention_weights = self.softmax(attention_scores)
attention_weights = attention_weights.view(batch_size, output_len, query_len) # batch x cmds x nodes
# (batch_size, output_len, query_len) * (batch_size, query_len, dimensions) ->
# (batch_size, output_len, dimensions)
mix = torch.bmm(attention_weights, context) # batch x cmds x hidden
# concat -> (batch_size * output_len, 2*dimensions)
combined = torch.cat((mix, query), dim=2)
combined = combined.view(batch_size * output_len, 2 * context_dim)
# Apply linear_out on every 2nd dimension of concat
# output -> (batch_size, output_len, dimensions)
output = self.linear_out(combined).view(batch_size, output_len, context_dim) # batch x cmds x hidden
output = self.tanh(output)
attention_weights = attention_weights.mean(dim=1) # averaged attentions from each command
return output, attention_weights
class SelfAttention(torch.nn.Module):
''' From Multi-Head Attention module
https://github.com/jadore801120/attention-is-all-you-need-pytorch'''
def __init__(self, query_hidden_dim, block_hidden_dim, n_head, dropout=0.1):
super().__init__()
self.n_head = n_head
self.block_hidden_dim = block_hidden_dim
# map query space to key space
# self.w_map = torch.nn.Linear(query_hidden_dim, block_hidden_dim, bias=False)
self.w_qs = torch.nn.Linear(block_hidden_dim, n_head * block_hidden_dim, bias=False)
self.w_ks = torch.nn.Linear(block_hidden_dim, n_head * block_hidden_dim, bias=False)
self.w_vs = torch.nn.Linear(block_hidden_dim, n_head * block_hidden_dim, bias=False)
torch.nn.init.normal_(self.w_qs.weight, mean=0, std=np.sqrt(2.0 / (block_hidden_dim * 2)))
torch.nn.init.normal_(self.w_ks.weight, mean=0, std=np.sqrt(2.0 / (block_hidden_dim * 2)))
torch.nn.init.normal_(self.w_vs.weight, mean=0, std=np.sqrt(2.0 / (block_hidden_dim * 2)))
self.attention = ScaledDotProductAttention(temperature=np.power(block_hidden_dim, 0.5),dropout=dropout)
self.fc = torch.nn.Linear(n_head * block_hidden_dim, block_hidden_dim)
self.layer_norm = torch.nn.LayerNorm(self.block_hidden_dim)
torch.nn.init.xavier_normal_(self.fc.weight)
self.dropout = torch.nn.Dropout(dropout)
def forward(self, q, mask, k, v):
# q: batch x len_q x hid
# k: batch x len_k x hid
# v: batch x len_v x hid
# mask: batch x len_q x len_k
batch_size, len_q = q.size(0), q.size(1)
len_k, len_v = k.size(1), v.size(1)
assert mask.size(1) == len_q
assert mask.size(2) == len_k
# q = self.w_map(q) # map to the key/value space
residual = q
q = self.w_qs(q).view(batch_size, len_q, self.n_head, self.block_hidden_dim)
k = self.w_ks(k).view(batch_size, len_k, self.n_head, self.block_hidden_dim)
v = self.w_vs(v).view(batch_size, len_v, self.n_head, self.block_hidden_dim)
q = q.permute(2, 0, 1, 3).contiguous().view(-1, len_q, self.block_hidden_dim) # (n*b) x lq x dk
k = k.permute(2, 0, 1, 3).contiguous().view(-1, len_k, self.block_hidden_dim) # (n*b) x lk x dk
v = v.permute(2, 0, 1, 3).contiguous().view(-1, len_v, self.block_hidden_dim) # (n*b) x lv x dv
mask = mask.repeat(self.n_head, 1, 1) # (n*b) x .. x ..
output, attn = self.attention(q, k, v, mask=mask)
output = output.view(self.n_head, batch_size, len_q, self.block_hidden_dim)
output = output.permute(1, 2, 0, 3).contiguous().view(batch_size, len_q, -1) # b x lq x (n*dv)
output = self.dropout(self.fc(output))
output = self.layer_norm(output + residual)
return output, attn
def weight_init(m):
'''
Usage:
model = Model()
model.apply(weight_init)
'''
if isinstance(m, nn.Conv1d):
torch.nn.init.normal_(m.weight.data)
if m.bias is not None:
torch.nn.init.normal_(m.bias.data)
elif isinstance(m, nn.Conv2d):
torch.nn.init.xavier_normal_(m.weight.data)
if m.bias is not None:
torch.nn.init.normal_(m.bias.data)
elif isinstance(m, nn.Conv3d):
torch.nn.init.xavier_normal_(m.weight.data)
if m.bias is not None:
torch.nn.init.normal_(m.bias.data)
elif isinstance(m, nn.ConvTranspose1d):
torch.nn.init.normal_(m.weight.data)
if m.bias is not None:
torch.nn.init.normal_(m.bias.data)
elif isinstance(m, nn.ConvTranspose2d):
torch.nn.init.xavier_normal_(m.weight.data)
if m.bias is not None:
torch.nn.init.normal_(m.bias.data)
elif isinstance(m, nn.ConvTranspose3d):
torch.nn.init.xavier_normal_(m.weight.data)
if m.bias is not None:
torch.nn.init.normal_(m.bias.data)
elif isinstance(m, nn.BatchNorm1d):
torch.nn.init.normal_(m.weight.data, mean=1, std=0.02)
torch.nn.init.constant_(m.bias.data, 0)
elif isinstance(m, nn.BatchNorm2d):
torch.nn.init.normal_(m.weight.data, mean=1, std=0.02)
torch.nn.init.constant_(m.bias.data, 0)
elif isinstance(m, nn.BatchNorm3d):
torch.nn.init.normal_(m.weight.data, mean=1, std=0.02)
torch.nn.init.constant_(m.bias.data, 0)
elif isinstance(m, nn.Linear):
torch.nn.init.xavier_normal_(m.weight.data)
torch.nn.init.normal_(m.bias.data)
elif isinstance(m, nn.LSTM):
for param in m.parameters():
if len(param.shape) >= 2:
torch.nn.init.orthogonal_(param.data)
else:
torch.nn.init.normal_(param.data)
elif isinstance(m, nn.LSTMCell):
for param in m.parameters():
if len(param.shape) >= 2:
torch.nn.init.orthogonal_(param.data)
else:
torch.nn.init.normal_(param.data)
elif isinstance(m, nn.GRU):
for param in m.parameters():
if len(param.shape) >= 2:
torch.nn.init.orthogonal_(param.data)
else:
torch.nn.init.normal_(param.data)
elif isinstance(m, nn.GRUCell):
for param in m.parameters():
if len(param.shape) >= 2:
torch.nn.init.orthogonal_(param.data)
else:
torch.nn.init.normal_(param.data)