-
Notifications
You must be signed in to change notification settings - Fork 13
/
RCutil.c
608 lines (556 loc) · 16 KB
/
RCutil.c
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539
540
541
542
543
544
545
546
547
548
549
550
551
552
553
554
555
556
557
558
559
560
561
562
563
564
565
566
567
568
569
570
571
572
573
574
575
576
577
578
579
580
581
582
583
584
585
586
587
588
589
590
591
592
593
594
595
596
597
598
599
600
601
602
603
604
605
606
607
608
/*
* Thanks to Greg Link from Penn State University
* for his math acceleration engine. Where available,
* the modified version of the engine found here, uses
* the fast, vendor-provided linear algebra routines
* from the BLAS and LAPACK packages in lieu of
* the vanilla C code present in the matrix functions
* of the previous versions of HotSpot.
*/
#include <stdio.h>
#include <stdlib.h>
#include <assert.h>
#include <math.h>
#include "temperature.h"
#include "flp.h"
#include "util.h"
/* thermal resistance calculation */
double getr(double conductivity, double thickness, double area)
{
return thickness / (conductivity * area);
}
/* thermal capacitance calculation */
double getcap(double sp_heat, double thickness, double area)
{
/* include lumped vs. distributed correction */
return C_FACTOR * sp_heat * thickness * area;
}
/*
* LUP decomposition from the pseudocode given in the CLR
* 'Introduction to Algorithms' textbook. The matrix 'a' is
* transformed into an in-place lower/upper triangular matrix
* and the vector'p' carries the permutation vector such that
* Pa = lu, where 'P' is the matrix form of 'p'. The 'spd' flag
* indicates that 'a' is symmetric and positive definite
*/
void lupdcmp(double**a, int n, int *p, int spd)
{
#if(MATHACCEL == MA_INTEL)
int info = 0;
if (!spd)
dgetrf(&n, &n, a[0], &n, p, &info);
else
dpotrf("U", &n, a[0], &n, &info);
assert(info == 0);
#elif(MATHACCEL == MA_AMD)
int info = 0;
if (!spd)
dgetrf_(&n, &n, a[0], &n, p, &info);
else
dpotrf_("U", &n, a[0], &n, &info, 1);
assert(info == 0);
#elif(MATHACCEL == MA_APPLE)
int info = 0;
if (!spd)
dgetrf_((__CLPK_integer *)&n, (__CLPK_integer *)&n, a[0],
(__CLPK_integer *)&n, (__CLPK_integer *)p,
(__CLPK_integer *)&info);
else
dpotrf_("U", (__CLPK_integer *)&n, a[0], (__CLPK_integer *)&n,
(__CLPK_integer *)&info);
assert(info == 0);
#elif(MATHACCEL == MA_SUN)
int info = 0;
if (!spd)
dgetrf_(&n, &n, a[0], &n, p, &info);
else
dpotrf_("U", &n, a[0], &n, &info);
assert(info == 0);
#else
int i, j, k, pivot=0;
double max = 0;
/* start with identity permutation */
for (i=0; i < n; i++)
p[i] = i;
for (k=0; k < n-1; k++) {
max = 0;
for (i = k; i < n; i++) {
if (fabs(a[i][k]) > max) {
max = fabs(a[i][k]);
pivot = i;
}
}
if (eq (max, 0))
fatal ("singular matrix in lupdcmp\n");
/* bring pivot element to position */
swap_ival (&p[k], &p[pivot]);
for (i=0; i < n; i++)
swap_dval (&a[k][i], &a[pivot][i]);
for (i=k+1; i < n; i++) {
a[i][k] /= a[k][k];
for (j=k+1; j < n; j++)
a[i][j] -= a[i][k] * a[k][j];
}
}
#endif
}
/*
* the matrix a is an in-place lower/upper triangular matrix
* the following macros split them into their constituents
*/
#define LOWER(a, i, j) ((i > j) ? a[i][j] : 0)
#define UPPER(a, i, j) ((i <= j) ? a[i][j] : 0)
/*
* LU forward and backward substitution from the pseudocode given
* in the CLR 'Introduction to Algorithms' textbook. It solves ax = b
* where, 'a' is an in-place lower/upper triangular matrix. The vector
* 'x' carries the solution vector. 'p' is the permutation vector. The
* 'spd' flag indicates that 'a' is symmetric and positive definite
*/
void lusolve(double **a, int n, int *p, double *b, double *x, int spd)
{
#if(MATHACCEL == MA_INTEL)
int one = 1, info = 0;
cblas_dcopy(n, b, 1, x, 1);
if (!spd)
dgetrs("T", &n, &one, a[0], &n, p, x, &n, &info);
else
dpotrs("U", &n, &one, a[0], &n, x, &n, &info);
assert(info == 0);
#elif(MATHACCEL == MA_AMD)
int one = 1, info = 0;
dcopy(n, b, 1, x, 1);
if (!spd)
dgetrs_("T", &n, &one, a[0], &n, p, x, &n, &info, 1);
else
dpotrs_("U", &n, &one, a[0], &n, x, &n, &info, 1);
assert(info == 0);
#elif(MATHACCEL == MA_APPLE)
int one = 1, info = 0;
cblas_dcopy(n, b, 1, x, 1);
if (!spd)
dgetrs_("T", (__CLPK_integer *)&n, (__CLPK_integer *)&one, a[0],
(__CLPK_integer *)&n, (__CLPK_integer *)p, x,
(__CLPK_integer *)&n, (__CLPK_integer *)&info);
else
dpotrs_("U", (__CLPK_integer *)&n, (__CLPK_integer *)&one, a[0],
(__CLPK_integer *)&n, x, (__CLPK_integer *)&n,
(__CLPK_integer *)&info);
assert(info == 0);
#elif(MATHACCEL == MA_SUN)
int one = 1, info = 0;
dcopy(n, b, 1, x, 1);
if (!spd)
dgetrs_("T", &n, &one, a[0], &n, p, x, &n, &info);
else
dpotrs_("U", &n, &one, a[0], &n, x, &n, &info);
assert(info == 0);
#else
int i, j;
double *y = dvector (n);
double sum;
/* forward substitution - solves ly = pb */
for (i=0; i < n; i++) {
for (j=0, sum=0; j < i; j++)
sum += y[j] * LOWER(a, i, j);
y[i] = b[p[i]] - sum;
}
/* backward substitution - solves ux = y */
for (i=n-1; i >= 0; i--) {
for (j=i+1, sum=0; j < n; j++)
sum += x[j] * UPPER(a, i, j);
x[i] = (y[i] - sum) / UPPER(a, i, i);
}
free_dvector(y);
#endif
}
/* core of the 4th order Runge-Kutta method, where the Euler step
* (y(n+1) = y(n) + h * k1 where k1 = dydx(n)) is provided as an input.
* to evaluate dydx at different points, a call back function f (slope
* function) is also passed as a parameter. Given values for y, and k1,
* this function advances the solution over an interval h, and returns
* the solution in yout. For details, see the discussion in "Numerical
* Recipes in C", Chapter 16, from
* http://www.nrbook.com/a/bookcpdf/c16-1.pdf
*/
void rk4_core(void *model, double *y, double *k1, void *p, int n, double h, double *yout, slope_fn_ptr f)
{
int i;
double *t, *k2, *k3, *k4;
k2 = dvector(n);
k3 = dvector(n);
k4 = dvector(n);
t = dvector(n);
/* k2 is the slope at the trial midpoint (t) found using
* slope k1 (which is at the starting point).
*/
/* t = y + h/2 * k1 (t = y; t += h/2 * k1) */
#if (MATHACCEL == MA_INTEL || MATHACCEL == MA_APPLE)
cblas_dcopy(n, y, 1, t, 1);
cblas_daxpy(n, h/2.0, k1, 1, t, 1);
#elif (MATHACCEL == MA_AMD || MATHACCEL == MA_SUN)
dcopy(n, y, 1, t, 1);
daxpy(n, h/2.0, k1, 1, t, 1);
#else
for(i=0; i < n; i++)
t[i] = y[i] + h/2.0 * k1[i];
#endif
/* k2 = slope at t */
(*f)(model, t, p, k2);
/* k3 is the slope at the trial midpoint (t) found using
* slope k2 found above.
*/
/* t = y + h/2 * k2 (t = y; t += h/2 * k2) */
#if (MATHACCEL == MA_INTEL || MATHACCEL == MA_APPLE)
cblas_dcopy(n, y, 1, t, 1);
cblas_daxpy(n, h/2.0, k2, 1, t, 1);
#elif (MATHACCEL == MA_AMD || MATHACCEL == MA_SUN)
dcopy(n, y, 1, t, 1);
daxpy(n, h/2.0, k2, 1, t, 1);
#else
for(i=0; i < n; i++)
t[i] = y[i] + h/2.0 * k2[i];
#endif
/* k3 = slope at t */
(*f)(model, t, p, k3);
/* k4 is the slope at trial endpoint (t) found using
* slope k3 found above.
*/
/* t = y + h * k3 (t = y; t += h * k3) */
#if (MATHACCEL == MA_INTEL || MATHACCEL == MA_APPLE)
cblas_dcopy(n, y, 1, t, 1);
cblas_daxpy(n, h, k3, 1, t, 1);
#elif (MATHACCEL == MA_AMD || MATHACCEL == MA_SUN)
dcopy(n, y, 1, t, 1);
daxpy(n, h, k3, 1, t, 1);
#else
for(i=0; i < n; i++)
t[i] = y[i] + h * k3[i];
#endif
/* k4 = slope at t */
(*f)(model, t, p, k4);
/* yout = y + h*(k1/6 + k2/3 + k3/3 + k4/6) */
#if (MATHACCEL == MA_INTEL || MATHACCEL == MA_APPLE)
/* yout = y */
cblas_dcopy(n, y, 1, yout, 1);
/* yout += h*k1/6 */
cblas_daxpy(n, h/6.0, k1, 1, yout, 1);
/* yout += h*k2/3 */
cblas_daxpy(n, h/3.0, k2, 1, yout, 1);
/* yout += h*k3/3 */
cblas_daxpy(n, h/3.0, k3, 1, yout, 1);
/* yout += h*k4/6 */
cblas_daxpy(n, h/6.0, k4, 1, yout, 1);
#elif (MATHACCEL == MA_AMD || MATHACCEL == MA_SUN)
dcopy(n, y, 1, yout, 1);
/* yout += h*k1/6 */
daxpy(n, h/6.0, k1, 1, yout, 1);
/* yout += h*k2/3 */
daxpy(n, h/3.0, k2, 1, yout, 1);
/* yout += h*k3/3 */
daxpy(n, h/3.0, k3, 1, yout, 1);
/* yout += h*k4/6 */
daxpy(n, h/6.0, k4, 1, yout, 1);
#else
for (i =0; i < n; i++)
yout[i] = y[i] + h * (k1[i] + 2*k2[i] + 2*k3[i] + k4[i])/6.0;
#endif
free_dvector(k2);
free_dvector(k3);
free_dvector(k4);
free_dvector(t);
}
/*
* 4th order Runge Kutta solver with adaptive step sizing.
* It integrates and solves the ODE dy + cy = p between
* t and t+h. It returns the correct step size to be used
* next time. slope function f is the call back used to
* evaluate the derivative at each point
*/
#define RK4_SAFETY 0.95
#define RK4_MAXUP 5.0
#define RK4_MAXDOWN 10.0
#define RK4_PRECISION 0.01
double rk4(void *model, double *y, void *p, int n, double *h, double *yout, slope_fn_ptr f)
{
int i;
double *k1, *t1, *t2, *ytemp, max, new_h = (*h);
k1 = dvector(n);
t1 = dvector(n);
t2 = dvector(n);
ytemp = dvector(n);
/* evaluate the slope k1 at the beginning */
(*f)(model, y, p, k1);
/* try until accuracy is achieved */
do {
(*h) = new_h;
/* try RK4 once with normal step size */
rk4_core(model, y, k1, p, n, (*h), ytemp, f);
/* repeat it with two half-steps */
rk4_core(model, y, k1, p, n, (*h)/2.0, t1, f);
/* y after 1st half-step is in t1. re-evaluate k1 for this */
(*f)(model, t1, p, k1);
/* get output of the second half-step in t2 */
rk4_core(model, t1, k1, p, n, (*h)/2.0, t2, f);
/* find the max diff between these two results:
* use t1 to store the diff
*/
#if (MATHACCEL == MA_INTEL || MATHACCEL == MA_APPLE)
/* t1 = ytemp */
cblas_dcopy(n, ytemp, 1, t1, 1);
/* t1 = -1 * t2 + t1 = ytemp - t2 */
cblas_daxpy(n, -1.0, t2, 1, t1, 1);
/* max = |t1[max_abs_index]| */
max = fabs(t1[cblas_idamax(n, t1, 1)]);
#elif (MATHACCEL == MA_AMD || MATHACCEL == MA_SUN)
/* t1 = ytemp */
dcopy(n, ytemp, 1, t1, 1);
/* t1 = -1 * t2 + t1 = ytemp - t2 */
daxpy(n, -1.0, t2, 1, t1, 1);
/*
* max = |t1[max_abs_index]| note: FORTRAN BLAS
* indices start from 1 as opposed to CBLAS where
* indices start from 0
*/
max = fabs(t1[idamax(n, t1, 1)-1]);
#else
for(i=0; i < n; i++)
t1[i] = fabs(ytemp[i] - t2[i]);
max = t1[0];
for(i=1; i < n; i++)
if (max < t1[i])
max = t1[i];
#endif
/*
* compute the correct step size: see equation
* 16.2.10 in chapter 16 of "Numerical Recipes
* in C"
*/
/* accuracy OK. increase step size */
if (max <= RK4_PRECISION) {
new_h = RK4_SAFETY * (*h) * pow(fabs(RK4_PRECISION/max), 0.2);
if (new_h > RK4_MAXUP * (*h))
new_h = RK4_MAXUP * (*h);
/* inaccuracy error. decrease step size and compute again */
} else {
new_h = RK4_SAFETY * (*h) * pow(fabs(RK4_PRECISION/max), 0.25);
if (new_h < (*h) / RK4_MAXDOWN)
new_h = (*h) / RK4_MAXDOWN;
}
} while (new_h < (*h));
/* commit ytemp to yout */
#if (MATHACCEL == MA_INTEL || MATHACCEL == MA_APPLE)
cblas_dcopy(n, ytemp, 1, yout, 1);
#elif (MATHACCEL == MA_AMD || MATHACCEL == MA_SUN)
dcopy(n, ytemp, 1, yout, 1);
#else
copy_dvector(yout, ytemp, n);
#endif
/* clean up */
free_dvector(k1);
free_dvector(t1);
free_dvector(t2);
free_dvector(ytemp);
/* return the step-size */
return new_h;
}
/* matmult: C = AB, A, B are n x n square matrices */
void matmult(double **c, double **a, double **b, int n)
{
#if (MATHACCEL == MA_INTEL || MATHACCEL == MA_APPLE)
cblas_dgemm(CblasRowMajor, CblasNoTrans, CblasNoTrans,
n, n, n, 1.0, a[0], n, b[0], n, 0.0, c[0], n);
#elif (MATHACCEL == MA_AMD || MATHACCEL == MA_SUN)
/* B^T * A^T = (A * B)^T */
dgemm('N', 'N', n, n, n, 1.0, b[0], n, a[0], n, 0.0, c[0], n);
#else
int i, j, k;
for (i = 0; i < n; i++)
for (j = 0; j < n; j++) {
c[i][j] = 0;
for (k = 0; k < n; k++)
c[i][j] += a[i][k] * b[k][j];
}
#endif
}
/* same as above but 'a' is a diagonal matrix stored as a 1-d array */
void diagmatmult(double **c, double *a, double **b, int n)
{
int i;
#if (MATHACCEL == MA_INTEL || MATHACCEL == MA_APPLE)
zero_dmatrix(c, n, n);
for(i=0; i < n; i++)
cblas_daxpy(n, a[i], b[i], 1, c[i], 1);
#elif (MATHACCEL == MA_AMD || MATHACCEL == MA_SUN)
zero_dmatrix(c, n, n);
for(i=0; i < n; i++)
daxpy(n, a[i], b[i], 1, c[i], 1);
#else
int j;
for (i = 0; i < n; i++)
for (j = 0; j < n; j++)
c[i][j] = a[i] * b[i][j];
#endif
}
/* mult of an n x n matrix and an n x 1 column vector */
void matvectmult(double *vout, double **m, double *vin, int n)
{
#if (MATHACCEL == MA_INTEL || MATHACCEL == MA_APPLE)
cblas_dgemv(CblasRowMajor, CblasNoTrans, n, n, 1.0, m[0],
n, vin, 1, 0.0, vout, 1);
#elif (MATHACCEL == MA_AMD || MATHACCEL == MA_SUN)
dgemv('T', n, n, 1.0, m[0], n, vin, 1, 0.0, vout, 1);
#else
int i, j;
for (i = 0; i < n; i++) {
vout[i] = 0;
for (j = 0; j < n; j++)
vout[i] += m[i][j] * vin[j];
}
#endif
}
/* same as above but 'm' is a diagonal matrix stored as a 1-d array */
void diagmatvectmult(double *vout, double *m, double *vin, int n)
{
#if (MATHACCEL == MA_INTEL || MATHACCEL == MA_APPLE)
cblas_dsbmv(CblasRowMajor, CblasUpper, n, 0, 1.0, m, 1, vin,
1, 0.0, vout, 1);
#elif (MATHACCEL == MA_AMD || MATHACCEL == MA_SUN)
dsbmv('U', n, 0, 1.0, m, 1, vin, 1, 0.0, vout, 1);
#else
int i;
for (i = 0; i < n; i++)
vout[i] = m[i] * vin[i];
#endif
}
/*
* inv = m^-1, inv, m are n by n matrices.
* the spd flag indicates that m is symmetric
* and positive definite
*/
#define BLOCK_SIZE 256
void matinv(double **inv, double **m, int n, int spd)
{
int *p, lwork;
double *work;
int i, j;
#if (MATHACCEL != MA_NONE)
int info;
#endif
double *col;
p = ivector(n);
lwork = n * BLOCK_SIZE;
work = dvector(lwork);
#if (MATHACCEL == MA_INTEL)
info = 0;
cblas_dcopy(n*n, m[0], 1, inv[0], 1);
if (!spd) {
dgetrf(&n, &n, inv[0], &n, p, &info);
assert(info == 0);
dgetri(&n, inv[0], &n, p, work, &lwork, &info);
assert(info == 0);
} else {
dpotrf("U", &n, inv[0], &n, &info);
assert(info == 0);
dpotri("U", &n, inv[0], &n, &info);
assert(info == 0);
mirror_dmatrix(inv, n);
}
#elif(MATHACCEL == MA_AMD)
info = 0;
dcopy(n*n, m[0], 1, inv[0], 1);
if (!spd) {
dgetrf_(&n, &n, inv[0], &n, p, &info);
assert(info == 0);
dgetri_(&n, inv[0], &n, p, work, &lwork, &info);
assert(info == 0);
} else {
dpotrf_("U", &n, inv[0], &n, &info, 1);
assert(info == 0);
dpotri_("U", &n, inv[0], &n, &info, 1);
assert(info == 0);
mirror_dmatrix(inv, n);
}
#elif (MATHACCEL == MA_APPLE)
info = 0;
cblas_dcopy(n*n, m[0], 1, inv[0], 1);
if (!spd) {
dgetrf_((__CLPK_integer *)&n, (__CLPK_integer *)&n,
inv[0], (__CLPK_integer *)&n, (__CLPK_integer *)p,
(__CLPK_integer *)&info);
assert(info == 0);
dgetri_((__CLPK_integer *)&n, inv[0], (__CLPK_integer *)&n,
(__CLPK_integer *)p, work, (__CLPK_integer *)&lwork,
(__CLPK_integer *)&info);
assert(info == 0);
} else {
dpotrf_("U", (__CLPK_integer *)&n, inv[0], (__CLPK_integer *)&n,
(__CLPK_integer *)&info);
assert(info == 0);
dpotri_("U", (__CLPK_integer *)&n, inv[0], (__CLPK_integer *)&n,
(__CLPK_integer *)&info);
assert(info == 0);
mirror_dmatrix(inv, n);
}
#elif(MATHACCEL == MA_SUN)
info = 0;
dcopy(n*n, m[0], 1, inv[0], 1);
if (!spd) {
dgetrf_(&n, &n, inv[0], &n, p, &info);
assert(info == 0);
dgetri_(&n, inv[0], &n, p, work, &lwork, &info);
assert(info == 0);
} else {
dpotrf_("U", &n, inv[0], &n, &info);
assert(info == 0);
dpotri_("U", &n, inv[0], &n, &info);
assert(info == 0);
mirror_dmatrix(inv, n);
}
#else
col = dvector(n);
lupdcmp(m, n, p, spd);
for (j = 0; j < n; j++) {
for (i = 0; i < n; i++) col[i]=0.0;
col[j] = 1.0;
lusolve(m, n, p, col, work, spd);
for (i = 0; i < n; i++) inv[i][j]=work[i];
}
free_dvector(col);
#endif
free_ivector(p);
free_dvector(work);
}
/* dst = src1 + scale * src2 */
void scaleadd_dvector (double *dst, double *src1, double *src2, int n, double scale)
{
#if (MATHACCEL == MA_NONE)
int i;
for(i=0; i < n; i++)
dst[i] = src1[i] + scale * src2[i];
#else
/* dst == src2. so, dst *= scale, dst += src1 */
if (dst == src2 && dst != src1) {
#if (MATHACCEL == MA_INTEL || MATHACCEL == MA_APPLE)
cblas_dscal(n, scale, dst, 1);
cblas_daxpy(n, 1.0, src1, 1, dst, 1);
#elif (MATHACCEL == MA_AMD || MATHACCEL == MA_SUN)
dscal(n, scale, dst, 1);
daxpy(n, 1.0, src1, 1, dst, 1);
#else
fatal("unknown math acceleration\n");
#endif
/* dst = src1; dst += scale * src2 */
} else {
#if (MATHACCEL == MA_INTEL || MATHACCEL == MA_APPLE)
cblas_dcopy(n, src1, 1, dst, 1);
cblas_daxpy(n, scale, src2, 1, dst, 1);
#elif (MATHACCEL == MA_AMD || MATHACCEL == MA_SUN)
dcopy(n, src1, 1, dst, 1);
daxpy(n, scale, src2, 1, dst, 1);
#else
fatal("unknown math acceleration\n");
#endif
}
#endif
}