forked from tengyu-liu/GenDexGrasp
-
Notifications
You must be signed in to change notification settings - Fork 0
/
run_grasp_test.py
227 lines (193 loc) · 9.12 KB
/
run_grasp_test.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
import argparse
import json
import os.path
import time
import sys
import shutil
from isaacgym import gymapi
import torch
from utils.set_seed import set_global_seed
import webbrowser
import yaml
import platform
import gc
from deepdiff import DeepHash
import trimesh as tm
def get_parser():
parser = argparse.ArgumentParser()
parser.add_argument('--robot_name', default='barrett', type=str)
parser.add_argument('--data_dir', default='', type=str)
parser.add_argument('--object_list', default='./split_train_validate_objects.json', type=str)
parser.add_argument('--output_dir', default='./results', type=str)
parser.add_argument('--output_name', default='test_results', type=str)
parser.add_argument('--mode', default='test', type=str)
parser.add_argument('--filtered', help='prefiltered results by energy',
default=False, action = 'store_true')
parser.add_argument('--headless', help='Run simulation headless',
default=False, action = 'store_true')
args_ = parser.parse_args()
tag = str(time.time())
return args_, tag
def get_sim_param():
# initialize sim
sim_params = gymapi.SimParams()
sim_params.dt = 1./60.
sim_params.num_client_threads = 0
sim_params.physx.solver_type = 1
sim_params.physx.num_position_iterations = 4
sim_params.physx.num_velocity_iterations = 0
sim_params.physx.num_threads = 4
sim_params.physx.use_gpu = True
sim_params.physx.num_subscenes = 0
sim_params.physx.max_gpu_contact_pairs = 8 * 1024 * 1024
sim_params.use_gpu_pipeline = True
sim_params.physx.use_gpu = True
sim_params.physx.num_threads = 0
return sim_params
def compute_penetration(opt_q, object_name):
from utils.get_models import get_handmodel
import trimesh as tm
import trimesh.sample
# get object point cloud and normal cloud
object_mesh: tm.Trimesh
npts_object = 2048
object_mesh = tm.load(os.path.join('data/ContactDB', object_name.split('+')[1],
f'{object_name.split("+")[1]}_scaled.stl'))
object_point_cloud, faces_indices = trimesh.sample.sample_surface(mesh=object_mesh, count=npts_object)
object_normal_cloud = torch.tensor([object_mesh.face_normals[x] for x in faces_indices]).float().cuda()
object_point_cloud = torch.Tensor(object_point_cloud).float().cuda()
# object_point_cloud = torch.cat([object_point_cloud, contact_points_normal], dim=1).to(device)
# get hand model
num_particles = opt_q.shape[0]
hand_model = get_handmodel(robot_name, opt_q.shape[0], device, hand_scale=1.)
hand_model.update_kinematics(q=opt_q.clone().to(device))
hand_surface_points_ = hand_model.get_surface_points()
npts_hand = hand_surface_points_.size()[1]
batch_object_point_cloud = object_point_cloud.unsqueeze(0).repeat(num_particles, 1, 1)
batch_object_point_cloud = batch_object_point_cloud.reshape(num_particles, 1, npts_object, 3)
hand_surface_points = hand_surface_points_.reshape(num_particles, 1, npts_hand, 3)
hand_surface_points = hand_surface_points.repeat(1, npts_object, 1, 1).transpose(1, 2)
batch_object_point_cloud = batch_object_point_cloud.repeat(1, npts_hand, 1, 1)
hand_object_dist = (hand_surface_points - batch_object_point_cloud).norm(dim=3)
hand_object_dist, hand_object_indices = hand_object_dist.min(dim=2)
hand_object_points = torch.stack([object_point_cloud[x, :] for x in hand_object_indices], dim=0)
hand_object_normal = torch.stack([object_normal_cloud[x, :] for x in hand_object_indices], dim=0)
hand_object_signs = ((hand_object_points - hand_surface_points_) * hand_object_normal).sum(dim=2)
hand_object_signs = (hand_object_signs > 0).float()
penetration = (hand_object_signs * hand_object_dist).mean(dim=1)
return penetration
if __name__ == '__main__':
'''
Sample Run:
python run_grasp_test.py --filtered --headless --data_dir=gopt_results/fullrobots-sharp_lift_penw60/ood/ezgripper --robot_name=ezgripper --output_name=ez1
'''
set_global_seed(seed=42)
torch.set_printoptions(precision=4, sci_mode=False, edgeitems=8)
args, time_tag = get_parser()
print(args)
print(f'double check....')
# time.sleep(2.)yiran
cfg_path = './envs/tasks/grasp_test_force.yaml'
with open(cfg_path) as f:
cfg = yaml.safe_load(f)
adam_cfg_p ='envs/tasks/adam_config.yaml'
with open(adam_cfg_p) as f:
adam_cfg = yaml.safe_load(f)
sim_params = get_sim_param()
if args.robot_name == 'robotiq_3finger':
sim_params.physx.contact_offset = 0.1
time_tag = DeepHash(cfg)[cfg]
# if args.robot_name == 'allegro':
# cfg_path = 'envs/tasks/grasp_test_force_allegro.yaml'
# with open(cfg_path) as f:
# cfg = yaml.safe_load(f)
robot_name = args.robot_name
if robot_name == 'shadowhand':
from envs.tasks.grasp_test_force_shadowhand import IsaacGraspTestForce_shadowhand as IsaacGraspTestForce
elif robot_name == 'barrett':
from envs.tasks.grasp_test_force_barrett import IsaacGraspTestForce_barrett as IsaacGraspTestForce
elif robot_name == 'ezgripper':
from envs.tasks.grasp_test_force_ezgripper import IsaacGraspTestForce_ezgripper as IsaacGraspTestForce
else:
raise NotImplementedError
sim_headless = args.headless
device = "cuda"
# load object list
object_list = json.load(open(args.object_list))['validate']
object_list.sort()
data_basedir = args.data_dir
record_path = os.path.join(args.output_dir, f'{args.output_name}.json')
tra_dir = data_basedir # Folder containing grasp data
tra_path_list = os.listdir(tra_dir)
isaac_model = None
if args.mode == 'debug':
pass
elif args.mode == 'test':
#load or create new record
try:
test_record = json.load(open(record_path, 'rb'))
old_object_list = object_list.copy()
for object_name in old_object_list:
if bool(test_record[object_name]):
object_list.remove(object_name)
del old_object_list
print(f'load record from: {record_path} ...')
print(f'object list: {object_list}')
except FileNotFoundError:
print('create a new record')
test_record = {x: {} for x in object_list}
test_record['cfg'] = cfg
test_record['adam_cfg'] = adam_cfg
# Data to test
data_listdir = os.listdir(tra_dir)
if not args.filtered:
data_listdir.sort(key=lambda x: int(x.split('-')[2].split('.pt')[0]))
print(data_listdir)
for object_name in object_list:
print(f'Test for {object_name}')
q_tra_best = []
#Get min energy grasp for testing
if not args.filtered:
#GenDexGrasp loading and filtering of data
for tra_path in data_listdir:
if tra_path.split('-')[1] != object_name:
continue
i_record = torch.load(os.path.join(tra_dir, tra_path))
q_tra = i_record['q_tra']
energy = i_record['energy']
q_tra_best.append(q_tra[energy.min(dim=0)[1], -1, :].unsqueeze(0).to(device))
if len(q_tra_best)==0:
print(f"Object {object_name} was not found within the grasps provided.")
continue
q_final_best = torch.cat(q_tra_best, dim=0)
else:
# If already filtered the minimum energy grasp
for file in data_listdir:
if file.split('-')[2][:-3] != object_name:
continue
i_record = torch.load(os.path.join(tra_dir,file))
break
q_final_best = i_record['q_data']
print(cfg['eval_policy'])
if isaac_model is not None:
del isaac_model
gc.collect()
# Load object
object_mesh_path = f'./data/object/{object_name.split("+")[0]}/{object_name.split("+")[1]}/{object_name.split("+")[1]}.stl'
object_mesh = tm.load(object_mesh_path)
object_volume = object_mesh.volume
print(f'object volume: {object_volume}')
#Run Test
isaac_model = IsaacGraspTestForce(cfg, sim_params, gymapi.SIM_PHYSX, "cuda", 0, headless=sim_headless,
init_opt_q=q_final_best, object_name=object_name, object_volume=object_volume,
fix_object=False)
achieve_6dir = isaac_model.push_object()
# Save result
test_record[object_name][f'total_num'] = int(achieve_6dir.shape[0])
test_record[object_name][f'succ_num'] = int(achieve_6dir.sum())
test_record[object_name]['succ_flag'] = achieve_6dir.tolist()
print(test_record[object_name])
print(f'Is Grasp Stable: {achieve_6dir}')
json.dump(test_record, open(record_path, 'w'))
else:
raise NotImplementedError