-
Notifications
You must be signed in to change notification settings - Fork 98
/
datautils.py
104 lines (87 loc) · 3.6 KB
/
datautils.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
import random
import numpy as np
import torch
from datasets import load_dataset
from transformers import AutoTokenizer, LlamaTokenizer
def set_seed(seed):
np.random.seed(seed)
torch.random.manual_seed(seed)
def get_tokenizer(model):
if "llama" in model.lower():
tokenizer = LlamaTokenizer.from_pretrained(model, use_fast=False)
# fix for transformer 4.28.0.dev0 compatibility
if tokenizer.bos_token_id != 1 or tokenizer.eos_token_id != 2:
try:
tokenizer.bos_token_id = 1
tokenizer.eos_token_id = 2
except AttributeError:
pass
else:
tokenizer = AutoTokenizer.from_pretrained(model, use_fast=False)
return tokenizer
def get_wikitext2(nsamples, seed, seqlen, model, tokenizer):
traindata = load_dataset('wikitext', 'wikitext-2-raw-v1', split='train')
testdata = load_dataset('wikitext', 'wikitext-2-raw-v1', split='test')
trainenc = tokenizer(" ".join(traindata['text']), return_tensors='pt')
testenc = tokenizer("\n\n".join(testdata['text']), return_tensors='pt')
random.seed(seed)
trainloader = []
for _ in range(nsamples):
i = random.randint(0, trainenc.input_ids.shape[1] - seqlen - 1)
j = i + seqlen
inp = trainenc.input_ids[:, i:j]
tar = inp.clone()
tar[:, :-1] = -100
trainloader.append((inp, tar))
return trainloader, testenc
def get_ptb(nsamples, seed, seqlen, model, tokenizer):
traindata = load_dataset('ptb_text_only', 'penn_treebank', split='train')
testdata = load_dataset('ptb_text_only', 'penn_treebank', split='test')
trainenc = tokenizer(" ".join(traindata['sentence']), return_tensors='pt')
testenc = tokenizer(" ".join(testdata['sentence']), return_tensors='pt')
random.seed(seed)
trainloader = []
for _ in range(nsamples):
i = random.randint(0, trainenc.input_ids.shape[1] - seqlen - 1)
j = i + seqlen
inp = trainenc.input_ids[:, i:j]
tar = inp.clone()
tar[:, :-1] = -100
trainloader.append((inp, tar))
return trainloader, testenc
def get_c4(nsamples, seed, seqlen, model, tokenizer):
traindata = load_dataset(
'allenai/c4', data_files={'train': 'en/c4-train.00000-of-01024.json.gz'}, split='train'
)
valdata = load_dataset(
'allenai/c4', data_files={'validation': 'en/c4-validation.00000-of-00008.json.gz'}, split='validation'
)
random.seed(seed)
trainloader = []
for _ in range(nsamples):
while True:
i = random.randint(0, len(traindata) - 1)
trainenc = tokenizer(traindata[i]['text'], return_tensors='pt')
if trainenc.input_ids.shape[1] > seqlen:
break
i = random.randint(0, trainenc.input_ids.shape[1] - seqlen - 1)
j = i + seqlen
inp = trainenc.input_ids[:, i:j]
tar = inp.clone()
tar[:, :-1] = -100
trainloader.append((inp, tar))
valenc = tokenizer(' '.join(valdata[:1100]['text']), return_tensors='pt')
valenc = valenc.input_ids[:, :(256 * seqlen)]
class TokenizerWrapper:
def __init__(self, input_ids):
self.input_ids = input_ids
valenc = TokenizerWrapper(valenc)
return trainloader, valenc
def get_loaders(name, nsamples=128, seed=0, seqlen=2048, model=''):
tokenizer = get_tokenizer(model)
if 'wikitext2' in name:
return get_wikitext2(nsamples, seed, seqlen, model, tokenizer)
if 'ptb' in name:
return get_ptb(nsamples, seed, seqlen, model, tokenizer)
if 'c4' in name:
return get_c4(nsamples, seed, seqlen, model, tokenizer)