We read every piece of feedback, and take your input very seriously.
To see all available qualifiers, see our documentation.
Have a question about this project? Sign up for a free GitHub account to open an issue and contact its maintainers and the community.
By clicking “Sign up for GitHub”, you agree to our terms of service and privacy statement. We’ll occasionally send you account related emails.
Already on GitHub? Sign in to your account
fftn
axes
Following example returns an error
# Name Version Build Channel # ──────────────────────────────────────────────────── # numpy 1.26.4 py311h689b997_3 intel # numpy-base 1.26.4 py311h913173e_3 intel # mkl_fft 1.3.8 py311h977b55c_72 intel import numpy b=numpy.array([[5, 7, 6, 5], [4, 6, 4, 8], [9, 3, 7, 5]], dtype=numpy.float32) numpy.fft.fftn(b, axes=(), s=None, norm="forward") # TypeError: copyto() argument 1 must be numpy.ndarray, not numpy.complex64
while stock NumPy works correctly
# Name Version Build Channel # ────────────────────────────────────────────── # numpy 1.26.4 py312heda63a1_0 conda-forge import numpy b=numpy.array([[5, 7, 6, 5], [4, 6, 4, 8], [9, 3, 7, 5]], dtype=numpy.float32) numpy.fft.fftn(b, axes=(), s=None, norm="forward") # array([[5., 7., 6., 5.], # [4., 6., 4., 8.], # [9., 3., 7., 5.]], dtype=float32)
dtype of input array plays a role here. if dtype=numpy.int64, both stock NumPy and mkl_fft returns the same result.
dtype
dtype=numpy.int64
mkl_fft
The text was updated successfully, but these errors were encountered:
No branches or pull requests
Following example returns an error
while stock NumPy works correctly
dtype
of input array plays a role here. ifdtype=numpy.int64
, both stock NumPy andmkl_fft
returns the same result.The text was updated successfully, but these errors were encountered: