-
Notifications
You must be signed in to change notification settings - Fork 8
/
only_downstream_analyses.yaml
47 lines (47 loc) · 2 KB
/
only_downstream_analyses.yaml
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
meta:
name_of_run: "name_of_run"
output_dir: "outputdir"
dataset_dir: "datasetdir"
folder_depth_for_labels: 0 # 0 is the folder where the images are, 1 is the folder above, etc.
test_datasetsplit_fraction: 0.1
seed: 40 #should match scDINO seed if you want to use the same train/test split
images_are_RGB: False
channel_dict: { 0: "APC", 1: "BF", 2: "DAPI", 3: "GREEN", 4: "PE" } #do not use underscore or slash in channel name
selected_channel_combination_per_run: ["01234", "0", "1", "2", "3", "4"] #01234 is all 5 channels, 0 is only APC, 1 is only BF, etc.
center_crop: 0 #0 is no center crop
compute_cls_features:
use_weighted_sampler: False # if False, valdataset is used defined in meta
class_weights: "[0.1, 0.1, 0.1, 0.1, 0.1]" # only used if use_weighted_sampler is True, length of list must be equal to number of classes
num_samples: 5000 # only used if use_weighted_sampler is True
normalize: True
parse_mean_std_from_file: True
mean_std_file_location: "dir/mean_and_std_of_dataset.txt"
norm_per_channel: "[(x,x,x,x,x)(x,x,x,x,x)]" #only used if parse_mean_std_from_file is False
use_cuda: True
num_gpus: 1
batch_size_per_gpu: 24
num_workers: 8
pretrained_weights: "dir_to_pretrained_weights"
read_model_arch_dynamically: False
arch: "vit_small" #only used if read_model_arch_dynamically is False
patch_size: 8 #only used if read_model_arch_dynamically is False
use_mean_patch_embedding: False
use_custom_embedding_map: False # if True, the embedding map is defined by the user below
custom_embedding_map: "{0:2, 1:2, 2:2, 3:2, 4:2}" #first is the channel of the input image and the second is the channel of the embedding
images_are_RGB: False
resize: True
resize_length: 224 #only used if resize is True
attention_visualisation:
num_images_per_class: 1
kNN:
global:
n_neighbors: [5, 10, 50, 100, 200, 500]
temperature: 0.1
umap_eval:
n_neighbors: 30
min_dist: 0.4
n_components: 2
metric: euclidean
spread: 1.1
epochs: 100
topometry_plots: False