-
Notifications
You must be signed in to change notification settings - Fork 1
/
kitaev_ladder_snake2.py
515 lines (438 loc) · 14.6 KB
/
kitaev_ladder_snake2.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
import numpy as np
import itertools
import warnings
import matplotlib.pyplot as plt
from random import choice
import scipy.sparse as sparse
import tenpy
from tenpy.networks.site import Site, SpinHalfFermionSite, SpinHalfSite, GroupedSite, SpinSite
from tenpy.tools.misc import to_iterable, to_iterable_of_len, inverse_permutation
from tenpy.networks.mps import MPS # only to check boundary conditions
from tenpy.models.lattice import Lattice, _parse_sites
from tenpy.models.model import CouplingMPOModel, NearestNeighborModel
from tenpy.tools.params import get_parameter
from tenpy.algorithms import dmrg
# from tenpy.networks import SpinHalfSite
# some api for the file operation
import h5py
from tenpy.tools import hdf5_io
import os.path
# functools
from functools import wraps
# path
from pathlib import Path
__all__ = ['KitaevLadder', 'KitaevLadderModel']
class KitaevLadderSnakeCompact(Lattice):
""" A ladder coupling two chains of the Kitaev form
.. image :: /images/lattices/Ladder.*
Parameters
----------
L : int
The length of each chain, we have 2*L sites in total.
sites : (list of) :class:`~tenpy.networks.site.Site`
The two local lattice sites making the `unit_cell` of the :class:`Lattice`.
If only a single :class:`~tenpy.networks.site.Site` is given, it is used for both chains.
**kwargs :
Additional keyword arguments given to the :class:`Lattice`.
`basis`, `pos` and `pairs` are set accordingly.
"""
dim = 1
def __init__(self, L, sites, **kwargs):
sites = _parse_sites(sites, 2) # 2 instead of 4
basis = np.array([[2., 0.]])
pos = np.array([[0., 0.], [1., 0.]])
kwargs.setdefault('basis', basis)
kwargs.setdefault('positions', pos)
NNz = [(0, 1, np.array([0]))]
NNy = [(1, 0, np.array([1]))]
NNx = [(0, 1, np.array([1]))]
# nNNa = [(1, 2, np.array([0])), (3, 0, np.array([1]))]
# nNNb = [(0, 3, np.array([0])), (2, 1, np.array([1]))]
kwargs.setdefault('pairs', {})
kwargs['pairs'].setdefault('nearest_neighbors_x', NNx)
kwargs['pairs'].setdefault('nearest_neighbors_y', NNy)
kwargs['pairs'].setdefault('nearest_neighbors_z', NNz)
# kwargs['pairs'].setdefault('next_nearest_neighbors_a', nNNa)
# kwargs['pairs'].setdefault('next_nearest_neighbors_b', nNNb)
kwargs.setdefault('bc', 'open')
Lattice.__init__(self, [L], sites, **kwargs)
class KitaevLadderSnakeCompactModel(CouplingMPOModel):
def __init__(self, model_params):
CouplingMPOModel.__init__(self, model_params)
def init_sites(self, model_params):
# conserve = get_parameter(model_params, 'conserve', None, self.name)
conserve = model_params.get('conserve', None)
S = model_params.get('S', 0.5)
fs = SpinSite(S=S, conserve=conserve)
return [fs, fs]
def init_lattice(self, model_params):
L = model_params.get('L', 4) # 2 is the least possible number for L to be a Kitaev ladder we want, and 4 is more secured (I hope so)
gs = self.init_sites(model_params)
model_params.pop("L")
order = model_params.get('order', 'default')
bc = model_params.get('bc', 'open')
bc_MPS=model_params.get('bc_MPS', 'finite')
lattice_params = dict(
order=order,
bc=bc,
bc_MPS=bc_MPS,
basis=None,
positions=None,
nearest_neighbors=None,
next_nearest_neighbors=None,
next_next_nearest_neighbors=None,
pairs={},
)
lat = KitaevLadderSnakeCompact(L, gs, **lattice_params)
return lat
def init_terms(self, model_params):
# Jx = get_parameter(model_params, 'Jx', 1., self.name, True)
# Jy = get_parameter(model_params, 'Jy', 1., self.name, True)
# Jz = get_parameter(model_params, 'Jz', 1., self.name, True)
Jx = model_params.get('Jx', 1.)
Jy = model_params.get('Jy', 1.)
Jz = model_params.get('Jz', 1.)
for u1, u2, dx in self.lat.pairs['nearest_neighbors_x']:
self.add_coupling(Jx, u1, 'Sx', u2, 'Sx', dx)
for u1, u2, dx in self.lat.pairs['nearest_neighbors_y']:
self.add_coupling(Jy, u1, 'Sy', u2, 'Sy', dx)
for u1, u2, dx in self.lat.pairs['nearest_neighbors_z']:
self.add_coupling(Jz, u1, 'Sz', u2, 'Sz', dx)
def plot_lattice():
fig, ax = plt.subplots()
lat = KitaevLadderSnakeCompact(5, None, bc='open')
links_name = 'nearest_neighbors_z'
lat.plot_coupling(ax, lat.pairs[links_name], linewidth=5.)
# print(lat.pairs['nearest_neighbors'])
print(lat.unit_cell)
lat.plot_order(ax=ax, linestyle='--')
lat.plot_sites(ax)
# lat.plot_basis(ax, color='g', linewidth=3.)
ax.set_aspect('equal')
ax.get_xaxis().set_visible(False)
ax.get_yaxis().set_visible(False)
ax.axis('off')
# plt.title(links_name)
plt.show()
def run_atomic(
# model parameters
chi=30,
Jx=1.,
Jy=1.,
Jz=0.,
L=4,
S=.5,
bc='periodic',
bc_MPS='infinite',
# dmrg parametersc
initial_psi=None, # input psi
initial='random',
max_E_err=1.e-6,
max_S_err=1.e-4,
max_sweeps=200,
N_sweeps_check=10,
canonicalized=True,
# control for the verbose output
verbose=1,
):
"""
The fundamental function for running DMRG
"""
#######################
# set the paramters for model initialization
model_params = dict(
conserve=None,
Jx=Jx,
Jy=Jy,
Jz=Jz,
L=L,
S=S,
verbose=verbose,
bc=bc,
bc_MPS=bc_MPS,
)
# initialize the model
M = KitaevLadderSnakeCompactModel(model_params)
# providing a product state as the initial state
# prod_state = ["up", "up"] * (2 * model_params['L'])
# random generated initial state
if initial_psi==None:
prod_state = [ choice(["up", "down"]) for i in range(2 * L)]
if initial == 'up':
prod_state = ["up" for i in range(2 * L)]
if initial == 'down':
prod_state = ["down" for i in range(2 * L)]
psi = MPS.from_product_state(
M.lat.mps_sites(),
prod_state,
bc=M.lat.bc_MPS,
)
else:
psi = initial_psi.copy()
#######################
#######################
# set the parameters for the dmrg routine
dmrg_params = {
'start_env': 10,
# 'mixer': False, # setting this to True helps to escape local minima
'mixer': True,
'mixer_params': {
'amplitude': 1.e-4,
'decay': 1.2,
'disable_after': 50
},
'trunc_params': {
'chi_max': 4,
'svd_min': 1.e-10,
},
'max_E_err': max_E_err,
'max_S_err': max_S_err,
'max_sweeps': max_sweeps,
'N_sweeps_check': N_sweeps_check,
'verbose': verbose,
}
#######################
if verbose:
print("\n")
print("=" * 80)
print("="*30 + "START" + "="*30)
print("=" * 80)
print("Chi = ", chi, '\n')
eng = dmrg.TwoSiteDMRGEngine(psi, M, dmrg_params)
eng.reset_stats()
eng.trunc_params['chi_max'] = chi
info = eng.run()
if canonicalized:
psi.canonical_form()
if verbose:
print("Before the canonicalization:")
print("Bond dim = ", psi.chi)
print("Canonicalizing...")
psi_before = psi.copy()
if verbose:
ov = psi.overlap(psi_before, charge_sector=0)
print("The norm is: ",psi.norm)
print("The overlap is: ", ov)
print("After the canonicalization:")
print("Bond dim = ", psi.chi)
print("Computing properties")
energy=info[0]
if verbose:
print("Optimizing")
tenpy.tools.optimization.optimize(3)
if verbose:
print("Loop for chi=%d done." % chi)
print("=" * 80)
print("="*30 + " END " + "="*30)
print("=" * 80)
# the wave function, the ground-state energy, and the DMRG engine are all that we need
result = dict(
psi=psi.copy(),
energy=energy,
sweeps_stat=eng.sweep_stats.copy(),
parameters=dict(
# model parameters
chi=chi,
Jx=Jx,
Jy=Jy,
Jz=Jz,
L=L,
# dmrg parameters
initial_psi=initial_psi,
initial=initial,
max_E_err=max_E_err,
max_S_err=max_S_err,
max_sweeps=max_sweeps,
)
)
return result
def naming(
# model parameters
chi=30,
Jx=1.,
Jy=1.,
Jz=0.,
L=4,
):
return "KitaevLadder"+"_chi_"+str(chi)+"_Jx_"+str(Jx)+"_Jy_"+str(Jy)+"_Jz_"+str(Jz)+"_L_"+str(L)
def full_path(
# model parameters
chi=30,
Jx=1.,
Jy=1.,
Jz=0.,
L=4,
prefix='data/', suffix='.h5',
**kwargs):
return prefix+naming(chi, Jx, Jy, Jz, L)+suffix
def save_after_run(run, folder_prefix='data/'):
"""
Save data as .h5 files
"""
@wraps(run)
def wrapper(*args, **kwargs):
# if there is no such folder, create another one; if exists, doesn't matter
Path(folder_prefix).mkdir(parents=True, exist_ok=True)
file_name = full_path(prefix=folder_prefix, **kwargs)
# if the file already existed then don't do the computation again
if os.path.isfile(file_name):
print("This file already existed. Pass.")
return 0
else:
result = run(*args, **kwargs)
with h5py.File(file_name, 'w') as f:
hdf5_io.save_to_hdf5(f, result)
return result
return wrapper
def load_data(
chi=30,
Jx=1.,
Jy=1.,
Jz=0.,
L=4,
prefix='data/',
):
file_name = full_path(chi, Jx, Jy, Jz, L, prefix=prefix, suffix='.h5')
if not Path(file_name).exists():
return -1
with h5py.File(file_name, 'r') as f:
data = hdf5_io.load_from_hdf5(f)
return data
def finite_scaling(
# model params, should be input
Jx = 0.5,
Jy = 0.5,
Jz = 0,
L = 4,
S=.5,
# next there are some DMRG params
# tolerance for entropy calc error, should be input
max_S_err = 1e-4,
N_sweeps_check = 5,
max_sweeps = 1000,
# bond dimension list, should be input
chi_list = range(8, 50, 2),
# initial wave function
psi = None,
verbose = 1,
# should we load the existing files and also save the results into files
save_and_load = False,
prefix = 'snake/',
# should we do plotting after calculation
plot = False,
):
"""
Computing the finite-scaling cases at a specific `J=(Jx, Jy, Jz)`, over a specific bond dimension region.
"""
if save_and_load:
# folder name
# prefix = f'data_L_{L}_comb/'
# if there is no such folder, create another one; if exists, doesn't matter
Path(prefix).mkdir(parents=True, exist_ok=True)
run_save = save_after_run(run_atomic, folder_prefix=prefix)
S_list = []
xi_list = []
psi = psi
for chi in chi_list:
if save_and_load:
data = run_save(
Jx = Jx,
Jy = Jy,
Jz = Jz,
L = L,
S= S,
max_S_err=max_S_err,
chi = chi,
initial_psi=psi,
N_sweeps_check=N_sweeps_check,
max_sweeps=max_sweeps,
verbose=verbose,
)
if data==0:
data = load_data(Jx = Jx, Jy = Jy, Jz = Jz, L = L, chi = chi, prefix = prefix)
pass
pass
else:
data = run_atomic(
Jx = Jx,
Jy = Jy,
Jz = Jz,
L = L,
S = S,
max_S_err=max_S_err,
chi = chi,
initial_psi=psi,
N_sweeps_check=N_sweeps_check,
max_sweeps=max_sweeps,
verbose=verbose,
)
pass
psi = data['psi']
S_list.append(np.mean(psi.entanglement_entropy()))
xi_list.append(psi.correlation_length())
pass
if plot:
start = 0
end = -1
xs = np.log(xi_list[start:end])
ys = S_list[start:end]
def func(log_xi, c, a):
return (c / 6) * log_xi + a
fitParams, fitCovariances = curve_fit(func, xs, ys)
plt.plot(xs, ys, 'o', label='Data Points')
plt.xlabel(r'Log of Correlation Length, $\log\xi$')
plt.ylabel(r'Average Entanglement Entropy, $S$')
fitting_label = r'Curve Fitting: $S = \frac{c}{6}\log\xi + b$, c = %.2f, b= %.2f' % (fitParams[0], fitParams[1])
plt.plot(xs, func(xs, fitParams[0], fitParams[1]), label=fitting_label)
plt.legend()
title_name = f'Finite Scaling at J = ({Jx}, {Jy}, {Jz}), L={L}'
plt.title(title_name)
plt.savefig(title_name + '.png')
plt.show()
pass
return S_list, xi_list
def fDMRG_KL(
Jx=1.,
Jy=1.,
Jz=1.,
L=4,
chi=100,
verbose=True,
order='default',
bc_MPS='finite',
bc='open',
# to extract the low-lying excitation
orthogonal_to={},
):
"""
The finite DMRG for Kitaev Ladders
"""
print("finite DMRG, Kitaev ladder model")
print("L = {L:d}, Jx = {Jx:.2f}, Jy = {Jy:.2f}, Jz = {Jz:.2f}, ".format(L=L, Jx=Jx, Jy=Jy, Jz=Jz))
model_params = dict(L=L, Jx=Jx, Jy=Jy, Jz=Jz, bc_MPS=bc_MPS, bc=bc, conserve=None, order=order, verbose=verbose)
M = KitaevLadderSnakeCompactModel(model_params)
print("bc_MPS = ", M.lat.bc_MPS)
product_state = [np.random.choice(["up", "down"]) for i in range(M.lat.N_sites)]
psi = MPS.from_product_state(M.lat.mps_sites(), product_state, bc=M.lat.bc_MPS)
dmrg_params = {
# 'mixer': None, # setting this to True helps to escape local minima
'mixer': True,
'mixer_params': {
'amplitude': 1.e-4,
'decay': 1.2,
'disable_after': 50
},
'max_E_err': 1.e-10,
'trunc_params': {
'chi_max': chi,
'svd_min': 1.e-10
},
'verbose': verbose,
'combine': True,
'orthogonal_to': orthogonal_to,
}
info = dmrg.run(psi, M, dmrg_params) # the main work...
E = info['E']
print("E = {E:.13f}".format(E=E))
print("final bond dimensions: ", psi.chi)
return E, psi, M