forked from brandleyzhou/DIFFNet
-
Notifications
You must be signed in to change notification settings - Fork 0
/
evaluate_pose.py
128 lines (93 loc) · 4.5 KB
/
evaluate_pose.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
from __future__ import absolute_import, division, print_function
import os
import numpy as np
import torch
from torch.utils.data import DataLoader
from layers import transformation_from_parameters
from utils import readlines
from options import MonodepthOptions
from datasets import KITTIOdomDataset
import networks
# from https://github.com/tinghuiz/SfMLearner
def dump_xyz(source_to_target_transformations):
xyzs = []
cam_to_world = np.eye(4)
xyzs.append(cam_to_world[:3, 3])
for source_to_target_transformation in source_to_target_transformations:
cam_to_world = np.dot(cam_to_world, source_to_target_transformation)
xyzs.append(cam_to_world[:3, 3])
return xyzs
# from https://github.com/tinghuiz/SfMLearner
def compute_ate(gtruth_xyz, pred_xyz_o):
# Make sure that the first matched frames align (no need for rotational alignment as
# all the predicted/ground-truth snippets have been converted to use the same coordinate
# system with the first frame of the snippet being the origin).
offset = gtruth_xyz[0] - pred_xyz_o[0]
pred_xyz = pred_xyz_o + offset[None, :]
# Optimize the scaling factor
scale = np.sum(gtruth_xyz * pred_xyz) / np.sum(pred_xyz ** 2)
alignment_error = pred_xyz * scale - gtruth_xyz
rmse = np.sqrt(np.sum(alignment_error ** 2)) / gtruth_xyz.shape[0]
return rmse
def evaluate(opt):
"""Evaluate odometry on the KITTI dataset
"""
assert os.path.isdir(opt.load_weights_folder), \
"Cannot find a folder at {}".format(opt.load_weights_folder)
assert opt.eval_split == "odom_9" or opt.eval_split == "odom_10", \
"eval_split should be either odom_9 or odom_10"
sequence_id = int(opt.eval_split.split("_")[1])
filenames = readlines(
os.path.join(os.path.dirname(__file__), "splits", "odom",
"test_files_{:02d}.txt".format(sequence_id)))
dataset = KITTIOdomDataset(opt.data_path, filenames, opt.height, opt.width,
[0, 1], 4, is_train=False)
dataloader = DataLoader(dataset, opt.batch_size, shuffle=False,
num_workers=opt.num_workers, pin_memory=True, drop_last=False)
pose_encoder_path = os.path.join(opt.load_weights_folder, "pose_encoder.pth")
pose_decoder_path = os.path.join(opt.load_weights_folder, "pose.pth")
pose_encoder = networks.ResnetEncoder(opt.num_layers, False, 2)
pose_encoder.load_state_dict(torch.load(pose_encoder_path))
pose_decoder = networks.PoseDecoder(pose_encoder.num_ch_enc, 1, 2)
pose_decoder.load_state_dict(torch.load(pose_decoder_path))
pose_encoder.cuda()
pose_encoder.eval()
pose_decoder.cuda()
pose_decoder.eval()
pred_poses = []
print("-> Computing pose predictions")
opt.frame_ids = [0, 1] # pose network only takes two frames as input
with torch.no_grad():
for inputs in dataloader:
for key, ipt in inputs.items():
inputs[key] = ipt.cuda()
all_color_aug = torch.cat([inputs[("color_aug", i, 0)] for i in opt.frame_ids], 1)
features = [pose_encoder(all_color_aug)]
axisangle, translation = pose_decoder(features)
pred_poses.append(
transformation_from_parameters(axisangle[:, 0], translation[:, 0]).cpu().numpy())
pred_poses = np.concatenate(pred_poses)
gt_poses_path = os.path.join(opt.data_path, "poses", "{:02d}.txt".format(sequence_id))
gt_global_poses = np.loadtxt(gt_poses_path).reshape(-1, 3, 4)
gt_global_poses = np.concatenate(
(gt_global_poses, np.zeros((gt_global_poses.shape[0], 1, 4))), 1)
gt_global_poses[:, 3, 3] = 1
gt_xyzs = gt_global_poses[:, :3, 3]
gt_local_poses = []
for i in range(1, len(gt_global_poses)):
gt_local_poses.append(
np.linalg.inv(np.dot(np.linalg.inv(gt_global_poses[i - 1]), gt_global_poses[i])))
ates = []
num_frames = gt_xyzs.shape[0]
track_length = 5
for i in range(0, num_frames - 1):
local_xyzs = np.array(dump_xyz(pred_poses[i:i + track_length - 1]))
gt_local_xyzs = np.array(dump_xyz(gt_local_poses[i:i + track_length - 1]))
ates.append(compute_ate(gt_local_xyzs, local_xyzs))
print("\n Trajectory error: {:0.3f}, std: {:0.3f}\n".format(np.mean(ates), np.std(ates)))
save_path = os.path.join(opt.load_weights_folder, "poses.npy")
np.save(save_path, pred_poses)
print("-> Predictions saved to", save_path)
if __name__ == "__main__":
options = MonodepthOptions()
evaluate(options.parse())