forked from wbenbihi/hourglasstensorflow
-
Notifications
You must be signed in to change notification settings - Fork 0
/
datagen.py
574 lines (529 loc) · 20.3 KB
/
datagen.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539
540
541
542
543
544
545
546
547
548
549
550
551
552
553
554
555
556
557
558
559
560
561
562
563
564
565
566
567
568
569
570
571
572
573
574
# -*- coding: utf-8 -*-
"""
Deep Human Pose Estimation
Project by Walid Benbihi
MSc Individual Project
Imperial College
Created on Wed Jul 12 15:53:44 2017
@author: Walid Benbihi
@mail : w.benbihi(at)gmail.com
@github : https://github.com/wbenbihi/hourglasstensorlfow/
Abstract:
This python code creates a Stacked Hourglass Model
(Credits : A.Newell et al.)
(Paper : https://arxiv.org/abs/1603.06937)
Code translated from 'anewell' github
Torch7(LUA) --> TensorFlow(PYTHON)
(Code : https://github.com/anewell/pose-hg-train)
Modification are made and explained in the report
Goal : Achieve Real Time detection (Webcam)
----- Modifications made to obtain faster results (trade off speed/accuracy)
This work is free of use, please cite the author if you use it!
"""
import numpy as np
import cv2
import os
import matplotlib.pyplot as plt
import random
import time
from skimage import transform
import scipy.misc as scm
class DataGenerator():
""" DataGenerator Class : To generate Train, Validatidation and Test sets
for the Deep Human Pose Estimation Model
Formalized DATA:
Inputs:
Inputs have a shape of (Number of Image) X (Height: 256) X (Width: 256) X (Channels: 3)
Outputs:
Outputs have a shape of (Number of Image) X (Number of Stacks) X (Heigth: 64) X (Width: 64) X (OutputDimendion: 16)
Joints:
We use the MPII convention on joints numbering
List of joints:
00 - Right Ankle
01 - Right Knee
02 - Right Hip
03 - Left Hip
04 - Left Knee
05 - Left Ankle
06 - Pelvis (Not present in other dataset ex : LSP)
07 - Thorax (Not present in other dataset ex : LSP)
08 - Neck
09 - Top Head
10 - Right Wrist
11 - Right Elbow
12 - Right Shoulder
13 - Left Shoulder
14 - Left Elbow
15 - Left Wrist
# TODO : Modify selection of joints for Training
How to generate Dataset:
Create a TEXT file with the following structure:
image_name.jpg[LETTER] box_xmin box_ymin box_xmax b_ymax joints
[LETTER]:
One image can contain multiple person. To use the same image
finish the image with a CAPITAL letter [A,B,C...] for
first/second/third... person in the image
joints :
Sequence of x_p y_p (p being the p-joint)
/!\ In case of missing values use -1
The Generator will read the TEXT file to create a dictionnary
Then 2 options are available for training:
Store image/heatmap arrays (numpy file stored in a folder: need disk space but faster reading)
Generate image/heatmap arrays when needed (Generate arrays while training, increase training time - Need to compute arrays at every iteration)
"""
def __init__(self, joints_name = None, img_dir=None, train_data_file = None, remove_joints = None):
""" Initializer
Args:
joints_name : List of joints condsidered
img_dir : Directory containing every images
train_data_file : Text file with training set data
remove_joints : Joints List to keep (See documentation)
"""
if joints_name == None:
self.joints_list = ['r_anckle', 'r_knee', 'r_hip', 'l_hip', 'l_knee', 'l_anckle', 'pelvis', 'thorax', 'neck', 'head', 'r_wrist', 'r_elbow', 'r_shoulder', 'l_shoulder', 'l_elbow', 'l_wrist']
else:
self.joints_list = joints_name
self.toReduce = False
if remove_joints is not None:
self.toReduce = True
self.weightJ = remove_joints
self.letter = ['A','B','C','D','E','F','G','H','I','J','K','L','M','N']
self.img_dir = img_dir
self.train_data_file = train_data_file
self.images = os.listdir(img_dir)
# --------------------Generator Initialization Methods ---------------------
def _reduce_joints(self, joints):
""" Select Joints of interest from self.weightJ
"""
j = []
for i in range(len(self.weightJ)):
if self.weightJ[i] == 1:
j.append(joints[2*i])
j.append(joints[2*i + 1])
return j
def _create_train_table(self):
""" Create Table of samples from TEXT file
"""
self.train_table = []
self.no_intel = []
self.data_dict = {}
input_file = open(self.train_data_file, 'r')
print('READING TRAIN DATA')
for line in input_file:
line = line.strip()
line = line.split(' ')
name = line[0]
box = list(map(int,line[1:5]))
joints = list(map(int,line[5:]))
if self.toReduce:
joints = self._reduce_joints(joints)
if joints == [-1] * len(joints):
self.no_intel.append(name)
else:
joints = np.reshape(joints, (-1,2))
w = [1] * joints.shape[0]
for i in range(joints.shape[0]):
if np.array_equal(joints[i], [-1,-1]):
w[i] = 0
self.data_dict[name] = {'box' : box, 'joints' : joints, 'weights' : w}
self.train_table.append(name)
input_file.close()
def _randomize(self):
""" Randomize the set
"""
random.shuffle(self.train_table)
def _complete_sample(self, name):
""" Check if a sample has no missing value
Args:
name : Name of the sample
"""
for i in range(self.data_dict[name]['joints'].shape[0]):
if np.array_equal(self.data_dict[name]['joints'][i],[-1,-1]):
return False
return True
def _give_batch_name(self, batch_size = 16, set = 'train'):
""" Returns a List of Samples
Args:
batch_size : Number of sample wanted
set : Set to use (valid/train)
"""
list_file = []
for i in range(batch_size):
if set == 'train':
list_file.append(random.choice(self.train_set))
elif set == 'valid':
list_file.append(random.choice(self.valid_set))
else:
print('Set must be : train/valid')
break
return list_file
def _create_sets(self, validation_rate = 0.1):
""" Select Elements to feed training and validation set
Args:
validation_rate : Percentage of validation data (in ]0,1[, don't waste time use 0.1)
"""
sample = len(self.train_table)
valid_sample = int(sample * validation_rate)
self.train_set = self.train_table[:sample - valid_sample]
self.valid_set = []
preset = self.train_table[sample - valid_sample:]
print('START SET CREATION')
for elem in preset:
if self._complete_sample(elem):
self.valid_set.append(elem)
else:
self.train_set.append(elem)
print('SET CREATED')
np.save('Dataset-Validation-Set', self.valid_set)
np.save('Dataset-Training-Set', self.train_set)
print('--Training set :', len(self.train_set), ' samples.')
print('--Validation set :', len(self.valid_set), ' samples.')
def generateSet(self, rand = False):
""" Generate the training and validation set
Args:
rand : (bool) True to shuffle the set
"""
self._create_train_table()
if rand:
self._randomize()
self._create_sets()
# ---------------------------- Generating Methods --------------------------
def _makeGaussian(self, height, width, sigma = 3, center=None):
""" Make a square gaussian kernel.
size is the length of a side of the square
sigma is full-width-half-maximum, which
can be thought of as an effective radius.
"""
x = np.arange(0, width, 1, float)
y = np.arange(0, height, 1, float)[:, np.newaxis]
if center is None:
x0 = width // 2
y0 = height // 2
else:
x0 = center[0]
y0 = center[1]
return np.exp(-4*np.log(2) * ((x-x0)**2 + (y-y0)**2) / sigma**2)
def _generate_hm(self, height, width ,joints, maxlenght, weight):
""" Generate a full Heap Map for every joints in an array
Args:
height : Wanted Height for the Heat Map
width : Wanted Width for the Heat Map
joints : Array of Joints
maxlenght : Lenght of the Bounding Box
"""
num_joints = joints.shape[0]
hm = np.zeros((height, width, num_joints), dtype = np.float32)
for i in range(num_joints):
if not(np.array_equal(joints[i], [-1,-1])) and weight[i] == 1:
s = int(np.sqrt(maxlenght) * maxlenght * 10 / 4096) + 2
hm[:,:,i] = self._makeGaussian(height, width, sigma= s, center= (joints[i,0], joints[i,1]))
else:
hm[:,:,i] = np.zeros((height,width))
return hm
def _crop_data(self, height, width, box, joints, boxp = 0.05):
""" Automatically returns a padding vector and a bounding box given
the size of the image and a list of joints.
Args:
height : Original Height
width : Original Width
box : Bounding Box
joints : Array of joints
boxp : Box percentage (Use 20% to get a good bounding box)
"""
padding = [[0,0],[0,0],[0,0]]
j = np.copy(joints)
if box[0:2] == [-1,-1]:
j[joints == -1] = 1e5
box[0], box[1] = min(j[:,0]), min(j[:,1])
crop_box = [box[0] - int(boxp * (box[2]-box[0])), box[1] - int(boxp * (box[3]-box[1])), box[2] + int(boxp * (box[2]-box[0])), box[3] + int(boxp * (box[3]-box[1]))]
if crop_box[0] < 0: crop_box[0] = 0
if crop_box[1] < 0: crop_box[1] = 0
if crop_box[2] > width -1: crop_box[2] = width -1
if crop_box[3] > height -1: crop_box[3] = height -1
new_h = int(crop_box[3] - crop_box[1])
new_w = int(crop_box[2] - crop_box[0])
crop_box = [crop_box[0] + new_w //2, crop_box[1] + new_h //2, new_w, new_h]
if new_h > new_w:
bounds = (crop_box[0] - new_h //2, crop_box[0] + new_h //2)
if bounds[0] < 0:
padding[1][0] = abs(bounds[0])
if bounds[1] > width - 1:
padding[1][1] = abs(width - bounds[1])
elif new_h < new_w:
bounds = (crop_box[1] - new_w //2, crop_box[1] + new_w //2)
if bounds[0] < 0:
padding[0][0] = abs(bounds[0])
if bounds[1] > width - 1:
padding[0][1] = abs(height - bounds[1])
crop_box[0] += padding[1][0]
crop_box[1] += padding[0][0]
return padding, crop_box
def _crop_img(self, img, padding, crop_box):
""" Given a bounding box and padding values return cropped image
Args:
img : Source Image
padding : Padding
crop_box : Bounding Box
"""
img = np.pad(img, padding, mode = 'constant')
max_lenght = max(crop_box[2], crop_box[3])
img = img[crop_box[1] - max_lenght //2:crop_box[1] + max_lenght //2, crop_box[0] - max_lenght // 2:crop_box[0] + max_lenght //2]
return img
def _crop(self, img, hm, padding, crop_box):
""" Given a bounding box and padding values return cropped image and heatmap
Args:
img : Source Image
hm : Source Heat Map
padding : Padding
crop_box : Bounding Box
"""
img = np.pad(img, padding, mode = 'constant')
hm = np.pad(hm, padding, mode = 'constant')
max_lenght = max(crop_box[2], crop_box[3])
img = img[crop_box[1] - max_lenght //2:crop_box[1] + max_lenght //2, crop_box[0] - max_lenght // 2:crop_box[0] + max_lenght //2]
hm = hm[crop_box[1] - max_lenght //2:crop_box[1] + max_lenght//2, crop_box[0] - max_lenght // 2:crop_box[0] + max_lenght // 2]
return img, hm
def _relative_joints(self, box, padding, joints, to_size = 64):
""" Convert Absolute joint coordinates to crop box relative joint coordinates
(Used to compute Heat Maps)
Args:
box : Bounding Box
padding : Padding Added to the original Image
to_size : Heat Map wanted Size
"""
new_j = np.copy(joints)
max_l = max(box[2], box[3])
new_j = new_j + [padding[1][0], padding[0][0]]
new_j = new_j - [box[0] - max_l //2,box[1] - max_l //2]
new_j = new_j * to_size / (max_l + 0.0000001)
return new_j.astype(np.int32)
def _augment(self,img, hm, max_rotation = 30):
""" # TODO : IMPLEMENT DATA AUGMENTATION
"""
if random.choice([0,1]):
r_angle = np.random.randint(-1*max_rotation, max_rotation)
img = transform.rotate(img, r_angle, preserve_range = True)
hm = transform.rotate(hm, r_angle)
return img, hm
# ----------------------- Batch Generator ----------------------------------
def _generator(self, batch_size = 16, stacks = 4, set = 'train', stored = False, normalize = True, debug = False):
""" Create Generator for Training
Args:
batch_size : Number of images per batch
stacks : Number of stacks/module in the network
set : Training/Testing/Validation set # TODO: Not implemented yet
stored : Use stored Value # TODO: Not implemented yet
normalize : True to return Image Value between 0 and 1
_debug : Boolean to test the computation time (/!\ Keep False)
# Done : Optimize Computation time
16 Images --> 1.3 sec (on i7 6700hq)
"""
while True:
if debug:
t = time.time()
train_img = np.zeros((batch_size, 256,256,3), dtype = np.float32)
train_gtmap = np.zeros((batch_size, stacks, 64, 64, len(self.joints_list)), np.float32)
files = self._give_batch_name(batch_size= batch_size, set = set)
for i, name in enumerate(files):
if name[:-1] in self.images:
try :
img = self.open_img(name)
joints = self.data_dict[name]['joints']
box = self.data_dict[name]['box']
weight = self.data_dict[name]['weights']
if debug:
print(box)
padd, cbox = self._crop_data(img.shape[0], img.shape[1], box, joints, boxp = 0.2)
if debug:
print(cbox)
print('maxl :', max(cbox[2], cbox[3]))
new_j = self._relative_joints(cbox,padd, joints, to_size=64)
hm = self._generate_hm(64, 64, new_j, 64, weight)
img = self._crop_img(img, padd, cbox)
img = img.astype(np.uint8)
# On 16 image per batch
# Avg Time -OpenCV : 1.0 s -skimage: 1.25 s -scipy.misc.imresize: 1.05s
img = scm.imresize(img, (256,256))
# Less efficient that OpenCV resize method
#img = transform.resize(img, (256,256), preserve_range = True, mode = 'constant')
# May Cause trouble, bug in OpenCV imgwrap.cpp:3229
# error: (-215) ssize.area() > 0 in function cv::resize
#img = cv2.resize(img, (256,256), interpolation = cv2.INTER_CUBIC)
img, hm = self._augment(img, hm)
hm = np.expand_dims(hm, axis = 0)
hm = np.repeat(hm, stacks, axis = 0)
if normalize:
train_img[i] = img.astype(np.float32) / 255
else :
train_img[i] = img.astype(np.float32)
train_gtmap[i] = hm
except :
i = i-1
else:
i = i - 1
if debug:
print('Batch : ',time.time() - t, ' sec.')
yield train_img, train_gtmap
def _aux_generator(self, batch_size = 16, stacks = 4, normalize = True, sample_set = 'train'):
""" Auxiliary Generator
Args:
See Args section in self._generator
"""
while True:
train_img = np.zeros((batch_size, 256,256,3), dtype = np.float32)
train_gtmap = np.zeros((batch_size, stacks, 64, 64, len(self.joints_list)), np.float32)
train_weights = np.zeros((batch_size, len(self.joints_list)), np.float32)
i = 0
while i < batch_size:
try:
if sample_set == 'train':
name = random.choice(self.train_set)
elif sample_set == 'valid':
name = random.choice(self.valid_set)
joints = self.data_dict[name]['joints']
box = self.data_dict[name]['box']
weight = np.asarray(self.data_dict[name]['weights'])
train_weights[i] = weight
img = self.open_img(name)
padd, cbox = self._crop_data(img.shape[0], img.shape[1], box, joints, boxp = 0.2)
new_j = self._relative_joints(cbox,padd, joints, to_size=64)
hm = self._generate_hm(64, 64, new_j, 64, weight)
img = self._crop_img(img, padd, cbox)
img = img.astype(np.uint8)
img = scm.imresize(img, (256,256))
img, hm = self._augment(img, hm)
hm = np.expand_dims(hm, axis = 0)
hm = np.repeat(hm, stacks, axis = 0)
if normalize:
train_img[i] = img.astype(np.float32) / 255
else :
train_img[i] = img.astype(np.float32)
train_gtmap[i] = hm
i = i + 1
except :
print('error file: ', name)
yield train_img, train_gtmap, train_weights
def generator(self, batchSize = 16, stacks = 4, norm = True, sample = 'train'):
""" Create a Sample Generator
Args:
batchSize : Number of image per batch
stacks : Stacks in HG model
norm : (bool) True to normalize the batch
sample : 'train'/'valid' Default: 'train'
"""
return self._aux_generator(batch_size=batchSize, stacks=stacks, normalize=norm, sample_set=sample)
# ---------------------------- Image Reader --------------------------------
def open_img(self, name, color = 'RGB'):
""" Open an image
Args:
name : Name of the sample
color : Color Mode (RGB/BGR/GRAY)
"""
if name[-1] in self.letter:
name = name[:-1]
img = cv2.imread(os.path.join(self.img_dir, name))
if color == 'RGB':
img = cv2.cvtColor(img, cv2.COLOR_BGR2RGB)
return img
elif color == 'BGR':
return img
elif color == 'GRAY':
img = cv2.cvtColor(img, cv2.COLOR_BGR2GRAY)
else:
print('Color mode supported: RGB/BGR. If you need another mode do it yourself :p')
def plot_img(self, name, plot = 'cv2'):
""" Plot an image
Args:
name : Name of the Sample
plot : Library to use (cv2: OpenCV, plt: matplotlib)
"""
if plot == 'cv2':
img = self.open_img(name, color = 'BGR')
cv2.imshow('Image', img)
elif plot == 'plt':
img = self.open_img(name, color = 'RGB')
plt.imshow(img)
plt.show()
def test(self, toWait = 0.2):
""" TESTING METHOD
You can run it to see if the preprocessing is well done.
Wait few seconds for loading, then diaporama appears with image and highlighted joints
/!\ Use Esc to quit
Args:
toWait : In sec, time between pictures
"""
self._create_train_table()
self._create_sets()
for i in range(len(self.train_set)):
img = self.open_img(self.train_set[i])
w = self.data_dict[self.train_set[i]]['weights']
padd, box = self._crop_data(img.shape[0], img.shape[1], self.data_dict[self.train_set[i]]['box'], self.data_dict[self.train_set[i]]['joints'], boxp= 0.0)
new_j = self._relative_joints(box,padd, self.data_dict[self.train_set[i]]['joints'], to_size=256)
rhm = self._generate_hm(256, 256, new_j,256, w)
rimg = self._crop_img(img, padd, box)
# See Error in self._generator
#rimg = cv2.resize(rimg, (256,256))
rimg = scm.imresize(rimg, (256,256))
#rhm = np.zeros((256,256,16))
#for i in range(16):
# rhm[:,:,i] = cv2.resize(rHM[:,:,i], (256,256))
grimg = cv2.cvtColor(rimg, cv2.COLOR_RGB2GRAY)
cv2.imshow('image', grimg / 255 + np.sum(rhm,axis = 2))
# Wait
time.sleep(toWait)
if cv2.waitKey(1) == 27:
print('Ended')
cv2.destroyAllWindows()
break
# ------------------------------- PCK METHODS-------------------------------
def pck_ready(self, idlh = 3, idrs = 12, testSet = None):
""" Creates a list with all PCK ready samples
(PCK: Percentage of Correct Keypoints)
"""
id_lhip = idlh
id_rsho = idrs
self.total_joints = 0
self.pck_samples = []
for s in self.data_dict.keys():
if testSet == None:
if self.data_dict[s]['weights'][id_lhip] == 1 and self.data_dict[s]['weights'][id_rsho] == 1:
self.pck_samples.append(s)
wIntel = np.unique(self.data_dict[s]['weights'], return_counts = True)
self.total_joints += dict(zip(wIntel[0], wIntel[1]))[1]
else:
if self.data_dict[s]['weights'][id_lhip] == 1 and self.data_dict[s]['weights'][id_rsho] == 1 and s in testSet:
self.pck_samples.append(s)
wIntel = np.unique(self.data_dict[s]['weights'], return_counts = True)
self.total_joints += dict(zip(wIntel[0], wIntel[1]))[1]
print('PCK PREPROCESS DONE: \n --Samples:', len(self.pck_samples), '\n --Num.Joints', self.total_joints)
def getSample(self, sample = None):
""" Returns information of a sample
Args:
sample : (str) Name of the sample
Returns:
img: RGB Image
new_j: Resized Joints
w: Weights of Joints
joint_full: Raw Joints
max_l: Maximum Size of Input Image
"""
if sample != None:
try:
joints = self.data_dict[sample]['joints']
box = self.data_dict[sample]['box']
w = self.data_dict[sample]['weights']
img = self.open_img(sample)
padd, cbox = self._crop_data(img.shape[0], img.shape[1], box, joints, boxp = 0.2)
new_j = self._relative_joints(cbox,padd, joints, to_size=256)
joint_full = np.copy(joints)
max_l = max(cbox[2], cbox[3])
joint_full = joint_full + [padd[1][0], padd[0][0]]
joint_full = joint_full - [cbox[0] - max_l //2,cbox[1] - max_l //2]
img = self._crop_img(img, padd, cbox)
img = img.astype(np.uint8)
img = scm.imresize(img, (256,256))
return img, new_j, w, joint_full, max_l
except:
return False
else:
print('Specify a sample name')