-
Notifications
You must be signed in to change notification settings - Fork 2
/
pointnet2_msg_xyz-only_16x2_cosine_250e_scannet_seg-3d-20class.py
166 lines (161 loc) · 5.37 KB
/
pointnet2_msg_xyz-only_16x2_cosine_250e_scannet_seg-3d-20class.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
_base_ = [
'../_base_/datasets/scannet_seg-3d-20class.py',
'../_base_/models/pointnet2_msg.py',
'../_base_/schedules/seg_cosine_200e.py', '../_base_/default_runtime.py'
]
# dataset settings
# in this setting, we only use xyz as network input
# so we need to re-write all the data pipeline
dataset_type = 'ScanNetSegDataset'
data_root = './data/scannet/'
class_names = ('wall', 'floor', 'cabinet', 'bed', 'chair', 'sofa', 'table',
'door', 'window', 'bookshelf', 'picture', 'counter', 'desk',
'curtain', 'refrigerator', 'showercurtrain', 'toilet', 'sink',
'bathtub', 'otherfurniture')
num_points = 8192
train_pipeline = [
dict(
type='LoadPointsFromFile',
coord_type='DEPTH',
shift_height=False,
use_color=False,
load_dim=6,
use_dim=[0, 1, 2]), # only load xyz coordinates
dict(
type='LoadAnnotations3D',
with_bbox_3d=False,
with_label_3d=False,
with_mask_3d=False,
with_seg_3d=True),
dict(
type='PointSegClassMapping',
valid_cat_ids=(1, 2, 3, 4, 5, 6, 7, 8, 9, 10, 11, 12, 14, 16, 24, 28,
33, 34, 36, 39),
max_cat_id=40),
dict(
type='IndoorPatchPointSample',
num_points=num_points,
block_size=1.5,
ignore_index=len(class_names),
use_normalized_coord=False,
enlarge_size=0.2,
min_unique_num=None),
dict(type='DefaultFormatBundle3D', class_names=class_names),
dict(type='Collect3D', keys=['points', 'pts_semantic_mask'])
]
test_pipeline = [
dict(
type='LoadPointsFromFile',
coord_type='DEPTH',
shift_height=False,
use_color=False,
load_dim=6,
use_dim=[0, 1, 2]),
dict(
# a wrapper in order to successfully call test function
# actually we don't perform test-time-aug
type='MultiScaleFlipAug3D',
img_scale=(1333, 800),
pts_scale_ratio=1,
flip=False,
transforms=[
dict(
type='GlobalRotScaleTrans',
rot_range=[0, 0],
scale_ratio_range=[1., 1.],
translation_std=[0, 0, 0]),
dict(
type='RandomFlip3D',
sync_2d=False,
flip_ratio_bev_horizontal=0.0,
flip_ratio_bev_vertical=0.0),
dict(
type='DefaultFormatBundle3D',
class_names=class_names,
with_label=False),
dict(type='Collect3D', keys=['points'])
])
]
# construct a pipeline for data and gt loading in show function
# please keep its loading function consistent with test_pipeline (e.g. client)
# we need to load gt seg_mask!
eval_pipeline = [
dict(
type='LoadPointsFromFile',
coord_type='DEPTH',
shift_height=False,
use_color=False,
load_dim=6,
use_dim=[0, 1, 2]),
dict(
type='LoadAnnotations3D',
with_bbox_3d=False,
with_label_3d=False,
with_mask_3d=False,
with_seg_3d=True),
dict(
type='PointSegClassMapping',
valid_cat_ids=(1, 2, 3, 4, 5, 6, 7, 8, 9, 10, 11, 12, 14, 16, 24, 28,
33, 34, 36, 39),
max_cat_id=40),
dict(
type='DefaultFormatBundle3D',
with_label=False,
class_names=class_names),
dict(type='Collect3D', keys=['points', 'pts_semantic_mask'])
]
data = dict(
samples_per_gpu=16,
workers_per_gpu=4,
train=dict(
type=dataset_type,
data_root=data_root,
ann_file=data_root + 'scannet_infos_train.pkl',
pipeline=train_pipeline,
classes=class_names,
test_mode=False,
ignore_index=len(class_names),
scene_idxs=data_root + 'seg_info/train_resampled_scene_idxs.npy'),
val=dict(
type=dataset_type,
data_root=data_root,
ann_file=data_root + 'scannet_infos_val.pkl',
pipeline=test_pipeline,
classes=class_names,
test_mode=True,
ignore_index=len(class_names)),
test=dict(
type=dataset_type,
data_root=data_root,
ann_file=data_root + 'scannet_infos_val.pkl',
pipeline=test_pipeline,
classes=class_names,
test_mode=True,
ignore_index=len(class_names)))
evaluation = dict(pipeline=eval_pipeline, interval=5)
# model settings
model = dict(
backbone=dict(in_channels=3), # only [xyz]
decode_head=dict(
num_classes=20,
ignore_index=20,
# `class_weight` is generated in data pre-processing, saved in
# `data/scannet/seg_info/train_label_weight.npy`
# you can copy paste the values here, or input the file path as
# `class_weight=data/scannet/seg_info/train_label_weight.npy`
loss_decode=dict(class_weight=[
2.389689, 2.7215734, 4.5944676, 4.8543367, 4.096086, 4.907941,
4.690836, 4.512031, 4.623311, 4.9242644, 5.358117, 5.360071,
5.019636, 4.967126, 5.3502126, 5.4023647, 5.4027233, 5.4169416,
5.3954206, 4.6971426
])),
test_cfg=dict(
num_points=8192,
block_size=1.5,
sample_rate=0.5,
use_normalized_coord=False,
batch_size=24))
# runtime settings
checkpoint_config = dict(interval=5)
# PointNet2-MSG needs longer training time than PointNet2-SSG
runner = dict(type='EpochBasedRunner', max_epochs=250)