-
Notifications
You must be signed in to change notification settings - Fork 370
/
utils.py
163 lines (126 loc) · 4.49 KB
/
utils.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
# -*- coding: utf-8 -*-
#/usr/bin/python2
'''
By kyubyong park. [email protected].
https://www.github.com/kyubyong/dc_tts
'''
from __future__ import print_function, division
import numpy as np
import librosa
import os, copy
import matplotlib
matplotlib.use('pdf')
import matplotlib.pyplot as plt
from scipy import signal
from hyperparams import Hyperparams as hp
import tensorflow as tf
def get_spectrograms(fpath):
'''Parse the wave file in `fpath` and
Returns normalized melspectrogram and linear spectrogram.
Args:
fpath: A string. The full path of a sound file.
Returns:
mel: A 2d array of shape (T, n_mels) and dtype of float32.
mag: A 2d array of shape (T, 1+n_fft/2) and dtype of float32.
'''
# Loading sound file
y, sr = librosa.load(fpath, sr=hp.sr)
# Trimming
y, _ = librosa.effects.trim(y)
# Preemphasis
y = np.append(y[0], y[1:] - hp.preemphasis * y[:-1])
# stft
linear = librosa.stft(y=y,
n_fft=hp.n_fft,
hop_length=hp.hop_length,
win_length=hp.win_length)
# magnitude spectrogram
mag = np.abs(linear) # (1+n_fft//2, T)
# mel spectrogram
mel_basis = librosa.filters.mel(hp.sr, hp.n_fft, hp.n_mels) # (n_mels, 1+n_fft//2)
mel = np.dot(mel_basis, mag) # (n_mels, t)
# to decibel
mel = 20 * np.log10(np.maximum(1e-5, mel))
mag = 20 * np.log10(np.maximum(1e-5, mag))
# normalize
mel = np.clip((mel - hp.ref_db + hp.max_db) / hp.max_db, 1e-8, 1)
mag = np.clip((mag - hp.ref_db + hp.max_db) / hp.max_db, 1e-8, 1)
# Transpose
mel = mel.T.astype(np.float32) # (T, n_mels)
mag = mag.T.astype(np.float32) # (T, 1+n_fft//2)
return mel, mag
def spectrogram2wav(mag):
'''# Generate wave file from linear magnitude spectrogram
Args:
mag: A numpy array of (T, 1+n_fft//2)
Returns:
wav: A 1-D numpy array.
'''
# transpose
mag = mag.T
# de-noramlize
mag = (np.clip(mag, 0, 1) * hp.max_db) - hp.max_db + hp.ref_db
# to amplitude
mag = np.power(10.0, mag * 0.05)
# wav reconstruction
wav = griffin_lim(mag**hp.power)
# de-preemphasis
wav = signal.lfilter([1], [1, -hp.preemphasis], wav)
# trim
wav, _ = librosa.effects.trim(wav)
return wav.astype(np.float32)
def griffin_lim(spectrogram):
'''Applies Griffin-Lim's raw.'''
X_best = copy.deepcopy(spectrogram)
for i in range(hp.n_iter):
X_t = invert_spectrogram(X_best)
est = librosa.stft(X_t, hp.n_fft, hp.hop_length, win_length=hp.win_length)
phase = est / np.maximum(1e-8, np.abs(est))
X_best = spectrogram * phase
X_t = invert_spectrogram(X_best)
y = np.real(X_t)
return y
def invert_spectrogram(spectrogram):
'''Applies inverse fft.
Args:
spectrogram: [1+n_fft//2, t]
'''
return librosa.istft(spectrogram, hp.hop_length, win_length=hp.win_length, window="hann")
def plot_alignment(alignment, gs, dir=hp.logdir):
"""Plots the alignment.
Args:
alignment: A numpy array with shape of (encoder_steps, decoder_steps)
gs: (int) global step.
dir: Output path.
"""
if not os.path.exists(dir): os.mkdir(dir)
fig, ax = plt.subplots()
im = ax.imshow(alignment)
fig.colorbar(im)
plt.title('{} Steps'.format(gs))
plt.savefig('{}/alignment_{}.png'.format(dir, gs), format='png')
plt.close(fig)
def guided_attention(g=0.2):
'''Guided attention. Refer to page 3 on the paper.'''
W = np.zeros((hp.max_N, hp.max_T), dtype=np.float32)
for n_pos in range(W.shape[0]):
for t_pos in range(W.shape[1]):
W[n_pos, t_pos] = 1 - np.exp(-(t_pos / float(hp.max_T) - n_pos / float(hp.max_N)) ** 2 / (2 * g * g))
return W
def learning_rate_decay(init_lr, global_step, warmup_steps = 4000.0):
'''Noam scheme from tensor2tensor'''
step = tf.to_float(global_step + 1)
return init_lr * warmup_steps**0.5 * tf.minimum(step * warmup_steps**-1.5, step**-0.5)
def load_spectrograms(fpath):
'''Read the wave file in `fpath`
and extracts spectrograms'''
fname = os.path.basename(fpath)
mel, mag = get_spectrograms(fpath)
t = mel.shape[0]
# Marginal padding for reduction shape sync.
num_paddings = hp.r - (t % hp.r) if t % hp.r != 0 else 0
mel = np.pad(mel, [[0, num_paddings], [0, 0]], mode="constant")
mag = np.pad(mag, [[0, num_paddings], [0, 0]], mode="constant")
# Reduction
mel = mel[::hp.r, :]
return fname, mel, mag