-
Notifications
You must be signed in to change notification settings - Fork 11
/
index.html
835 lines (699 loc) · 39.2 KB
/
index.html
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539
540
541
542
543
544
545
546
547
548
549
550
551
552
553
554
555
556
557
558
559
560
561
562
563
564
565
566
567
568
569
570
571
572
573
574
575
576
577
578
579
580
581
582
583
584
585
586
587
588
589
590
591
592
593
594
595
596
597
598
599
600
601
602
603
604
605
606
607
608
609
610
611
612
613
614
615
616
617
618
619
620
621
622
623
624
625
626
627
628
629
630
631
632
633
634
635
636
637
638
639
640
641
642
643
644
645
646
647
648
649
650
651
652
653
654
655
656
657
658
659
660
661
662
663
664
665
666
667
668
669
670
671
672
673
674
675
676
677
678
679
680
681
682
683
684
685
686
687
688
689
690
691
692
693
694
695
696
697
698
699
700
701
702
703
704
705
706
707
708
709
710
711
712
713
714
715
716
717
718
719
720
721
722
723
724
725
726
727
728
729
730
731
732
733
734
735
736
737
738
739
740
741
742
743
744
745
746
747
748
749
750
751
752
753
754
755
756
757
758
759
760
761
762
763
764
765
766
767
768
769
770
771
772
773
774
775
776
777
778
779
780
781
782
783
784
785
786
787
788
789
790
791
792
793
794
795
796
797
798
799
800
801
802
803
804
805
806
807
808
809
810
811
812
813
814
815
816
817
818
819
820
821
822
823
824
825
826
827
828
829
830
831
832
833
834
835
<!DOCTYPE html>
<html>
<head>
<meta charset="utf-8">
<meta name="description" content="Visual Instruction Tuning">
<meta name="keywords" content="multimodal chatbot">
<meta name="viewport" content="width=device-width, initial-scale=1">
<title>LLaVA</title>
<link rel="stylesheet" href="https://fonts.googleapis.com/css?family=Google+Sans|Noto+Sans|Castoro">
<link rel="stylesheet" href="https://cdn.jsdelivr.net/npm/[email protected]/css/bulma.min.css">
<link rel="stylesheet" href="https://maxcdn.bootstrapcdn.com/bootstrap/4.5.2/css/bootstrap.min.css">
<link rel="stylesheet" href="https://cdn.jsdelivr.net/gh/jpswalsh/academicons@1/css/academicons.min.css">
<link rel="stylesheet" href="https://cdnjs.cloudflare.com/ajax/libs/font-awesome/5.15.1/css/all.min.css">
<link rel="stylesheet" href="./static/css/index.css">
<link rel="icon" href="https://cdn-icons-png.flaticon.com/512/954/954591.png">
<link href="https://fonts.googleapis.com/icon?family=Material+Icons" rel="stylesheet">
<script src="https://ajax.googleapis.com/ajax/libs/jquery/3.5.1/jquery.min.js"></script>
<script defer src="https://cdnjs.cloudflare.com/ajax/libs/font-awesome/5.15.1/js/all.min.js"></script>
<script type="module" src="https://gradio.s3-us-west-2.amazonaws.com/4.16.0/gradio.js"></script>
</head>
<style>
.expandable-card .card-text-container {
max-height: 200px;
overflow-y: hidden;
position: relative;
}
.expandable-card.expanded .card-text-container {
max-height: none;
}
.expand-btn {
position: relative;
display: none;
background-color: rgba(255, 255, 255, 0.8);
/* margin-top: -20px; */
/* justify-content: center; */
color: #510c75;
border-color: transparent;
}
.expand-btn:hover {
background-color: rgba(200, 200, 200, 0.8);
text-decoration: none;
border-color: transparent;
color: #510c75;
}
.expand-btn:focus {
outline: none;
text-decoration: none;
}
.expandable-card:not(.expanded) .card-text-container:after {
content: "";
position: absolute;
bottom: 0;
left: 0;
width: 100%;
height: 90px;
background: linear-gradient(rgba(255, 255, 255, 0.2), rgba(255, 255, 255, 1));
}
.expandable-card:not(.expanded) .expand-btn {
margin-top: -40px;
}
.card-body {
padding-bottom: 5px;
}
.vertical-flex-layout {
justify-content: center;
align-items: center;
height: 100%;
display: flex;
flex-direction: column;
gap: 5px;
}
.figure-img {
max-width: 100%;
height: auto;
}
.adjustable-font-size {
font-size: calc(0.5rem + 2vw);
}
.chat-history {
flex-grow: 1;
overflow-y: auto;
/* overflow-x: hidden; */
padding: 5px;
border-bottom: 1px solid #ccc;
margin-bottom: 10px;
}
#gradio pre {
background-color: transparent;
}
</style>
<body>
<section class="hero">
<div class="hero-body">
<div class="container is-max-desktop">
<div class="columns is-centered">
<div class="column has-text-centered">
<h1 class="title is-1 publication-title">LLaVA: <span class="is-size-2"><span class="is-size-1">L</span>arge <span class="is-size-1">L</span>anguage <span class="is-size-1">a</span>nd <span class="is-size-1">V</span>ision <span class="is-size-1">A</span>ssistant</span></h1>
<h3 class="title is-3 publication-title">Visual Instruction Tuning</h3>
<h5 class="subtitle is-5 publication-awards">NeurIPS 2023 (Oral)</h5>
<div class="is-size-5 publication-authors">
<span class="author-block">
<a href="https://hliu.cc/" style="color:#f68946;font-weight:normal;">Haotian Liu<sup>*</sup></a>,
</span>
<span class="author-block">
<a href="https://chunyuan.li/" style="color:#008AD7;font-weight:normal;">Chunyuan Li<sup>*</sup></a>,
</span>
<span class="author-block">
<a href="https://qywu.github.io/about.html" style="color:#F2A900;font-weight:normal;">Qingyang Wu</a>,
</span>
<span class="author-block">
<a href="https://pages.cs.wisc.edu/~yongjaelee/" style="color:#f68946;font-weight:normal;">Yong Jae
Lee</a>
</span>
</div>
<div class="is-size-5 publication-authors">
<span class="author-block"><b style="color:#f68946; font-weight:normal">▶ </b> University of
Wisconsin-Madison</b></span>
<span class="author-block"><b style="color:#008AD7; font-weight:normal">▶ </b> Microsoft Research</span>
<span class="author-block"><b style="color:#F2A900; font-weight:normal">▶ </b>Columbia
University</span>
</div>
<div class="is-size-6 publication-authors">
<span class="author-block"><sup>*</sup>Equal Contribution</span>
</div>
<!-- <div class="column has-text-centered">
<h3 class="title is-3 publication-title">Improved Baselines with Visual Instruction Fine-tuning</h3>
<div class="is-size-5 publication-authors">
<span class="author-block">
<a href="https://hliu.cc/" style="color:#f68946;font-weight:normal;">Haotian Liu<sup>*</sup></a>,
</span>
<span class="author-block">
<a href="https://chunyuan.li/" style="color:#008AD7;font-weight:normal;">Chunyuan Li<sup>*</sup></a>,
</span>
<span class="author-block">
<a href="https://yuheng-li.github.io" style="color:#008AD7;font-weight:normal;">Yuheng Li</a>,
</span>
<span class="author-block">
<a href="https://pages.cs.wisc.edu/~yongjaelee/" style="color:#f68946;font-weight:normal;">Yong Jae
Lee</a>
</span>
</div>
<div class="is-size-5 publication-authors">
<span class="author-block"><b style="color:#f68946; font-weight:normal">▶ </b> University of
Wisconsin-Madison</b></span>
<span class="author-block"><b style="color:#008AD7; font-weight:normal">▶ </b> Microsoft Research</span>
</div> -->
<div class="column has-text-centered">
<div class="publication-links">
<span class="link-block">
<a href="https://arxiv.org/abs/2304.08485" target="_blank"
class="external-link button is-normal is-rounded is-dark">
<span class="icon">
<i class="ai ai-arxiv"></i>
</span>
<span>arXiv</span>
</a>
</span>
<span class="link-block">
<a href="https://arxiv.org/abs/2310.03744" target="_blank"
class="external-link button is-normal is-rounded is-dark">
<span class="icon">
<i class="ai ai-arxiv"></i>
</span>
<span>arXiv (LLaVA-1.5)</span>
</a>
</span>
<span class="link-block">
<a href="https://github.com/haotian-liu/LLaVA" target="_blank"
class="external-link button is-normal is-rounded is-dark">
<span class="icon">
<i class="fab fa-github"></i>
</span>
<span>Code</span>
</a>
</span>
<span class="link-block">
<a href="https://llava.hliu.cc" target="_blank"
class="external-link button is-normal is-rounded is-dark">
<span class="icon">
<i class="far fa-images"></i>
</span>
<span>Demo</span>
</a>
</span>
<span class="link-block">
<a href="https://huggingface.co/datasets/liuhaotian/LLaVA-Instruct-150K" target="_blank"
class="external-link button is-normal is-rounded is-dark">
<span class="icon">
<i class="fas fa-database"></i>
</span>
<span>Dataset</span>
</a>
</span>
<span class="link-block">
<a href="https://github.com/haotian-liu/LLaVA/blob/main/docs/MODEL_ZOO.md" target="_blank"
class="external-link button is-normal is-rounded is-dark">
<span class="icon">
<i class="fas fa-share-square"></i>
</span>
<span>Model</span>
</a>
</span>
<!-- <span class="link-block">
<a href="#"
class="external-link button is-normal is-rounded is-dark">
<span class="icon">
<i class="fab fa-youtube"></i>
</span>
<span>Video</span>
</a>
</span> -->
</div>
</div>
</div>
</div>
</div>
</div>
</section>
<section class="hero teaser">
<div class="container is-max-desktop">
<div class="hero-body">
<h4 class="subtitle has-text-centered">
🔥<span style="color: #ff3860">[NEW!]</span> LLaVA-1.5 achieves SoTA on 11 benchmarks, with just simple modifications to the original LLaVA, utilizes all public data, completes training in ~1 day on a single 8-A100 node, and surpasses methods that use billion-scale data.
<br><br>
LLaVA represents a novel end-to-end trained large multimodal model that combines a vision encoder and Vicuna
for general-purpose visual and language understanding,
achieving impressive chat capabilities mimicking spirits of the multimodal GPT-4 and setting a new state-of-the-art accuracy on Science QA.
</h4>
</div>
</div>
</section>
<section class="section" style="background-color:#efeff081">
<div class="container is-max-desktop" id="gradio">
<gradio-app src="https://llava.hliu.cc"></gradio-app>
</div>
</section>
<section class="section" style="background-color:#efeff081">
<div class="container is-max-desktop">
<!-- Abstract. -->
<div class="columns is-centered has-text-centered">
<div class="column is-six-fifths">
<h2 class="title is-3">Abstract</h2>
<div class="content has-text-justified">
<p>
Instruction tuning large language models (LLMs) using machine-generated instruction-following data has improved zero-shot capabilities on new tasks in the language domain, but the idea is less explored in the multimodal field.
<ol type="1">
<li><b>Multimodal Instruct Data</b>. <span style="font-size: 95%;">We present the first attempt to use <a href="https://openai.com/research/gpt-4">language-only GPT-4</a> to generate multimodal language-image instruction-following data. </span></li>
<li><b>LLaVA Model</b>. <span style="font-size: 95%;">We introduce <it><b>LLaVA</b> (<b>L</b>arge <b>L</b>anguage-<b>a</b>nd-<b>V</b>ision <b>A</b>ssistant)</it>, an end-to-end trained large multimodal model that connects a vision encoder and LLM for general-purpose visual and language understanding.</li>
<li><b>Performance</b>. <span style="font-size: 95%;">Our early experiments show that LLaVA demonstrates impressive multimodel chat abilities, sometimes exhibiting the behaviors of multimodal GPT-4 on unseen images/instructions, and yields a 85.1% relative score compared with GPT-4 on a synthetic multimodal instruction-following dataset.
When fine-tuned on <a href="https://scienceqa.github.io/">Science QA</a>, the synergy of LLaVA and GPT-4 achieves a new state-of-the-art accuracy of 92.53%.</li>
<li><b>Open-source</b>. <span style="font-size: 95%;">We make GPT-4 generated visual instruction tuning data, our model and code base publicly available.</li>
</ol>
</p>
</div>
</div>
</div>
</div>
</section>
<section class="section">
<!-- Results. -->
<div class="columns is-centered has-text-centered">
<div class="column is-six-fifths">
<h2 class="title is-3"><img id="painting_icon" width="3%" src="https://cdn-icons-png.flaticon.com/512/5886/5886212.png"> Multimodal Instrucion-Following Data</h2>
</div>
</div>
<!-- </div> -->
<!--/ Results. -->
<div class="container is-max-desktop">
<div class="columns is-centered">
<div class="column is-full-width">
<div class="content has-text-justified">
<p>
Based on the COCO dataset, we interact with language-only GPT-4, and collect 158K unique language-image instruction-following samples in total, including 58K in conversations, 23K in detailed description, and 77k in complex reasoning, respectively. Please check out ``LLaVA-Instruct-150K''' on
<a href="https://huggingface.co/datasets/liuhaotian/LLaVA-Instruct-150K">[HuggingFace Dataset]</a>.
<!-- CSS Code: Place this code in the document's head (between the 'head' tags) -->
<style>
table.GeneratedTable {
width: 100%;
background-color: #ffffff;
border-collapse: collapse;
border-width: 2px;
border-color: #c1c4c5;
border-style: solid;
color: #000000;
}
table.GeneratedTable td, table.GeneratedTable th {
border-width: 2px;
border-color: #9b9d9e;
border-style: solid;
padding: 3px;
}
table.GeneratedTable thead {
background-color: #6691ee;
}
</style>
<!-- HTML Code: Place this code in the document's body (between the 'body' tags) where the table should appear -->
<div class="column is-six-fifths" width="80%">
<table class="GeneratedTable">
<thead>
<tr>
<th>Data file name</th>
<th>File Size</th>
<th>Sample Size</th>
</tr>
</thead>
<tbody>
<tr>
<td><a href="https://huggingface.co/datasets/liuhaotian/LLaVA-Instruct-150K/blob/main/conversation_58k.json">conversation_58k.json</a> </td>
<td>126 MB</td>
<td>58K</td>
</tr>
<tr>
<td><a href="https://huggingface.co/datasets/liuhaotian/LLaVA-Instruct-150K/blob/main/detail_23k.json">detail_23k.json</a></td>
<td>20.5 MB</td>
<td>23K</td>
</tr>
<tr>
<td><a href="https://huggingface.co/datasets/liuhaotian/LLaVA-Instruct-150K/blob/main/complex_reasoning_77k.json">complex_reasoning_77k.json</a></td>
<td>79.6 MB</td>
<td>77K</td>
</tr>
</tbody>
</table>
</div>
<!-- Codes by Quackit.com -->
</p>
<p>
For each subset, we visualize the root noun-verb pairs for the instruction and response. For each chart, please click the link for the interactive page to check out the noun-verb pairs whose frequency is higher the given number.
</p>
</div>
<div class="columns is-centered has-text-centered">
<div class="column is-six-fifths" style="display: flex; align-items: flex-start; justify-content: center;">
<figure style="text-align: center;">
<img id="teaser" width="100%" src="images/LLaVA-Instruct-150K_noun_verb/conversation_58k_instruction_verb_noun_50.png">
<figcaption>
Instruction: Conversation [<a href="images/LLaVA-Instruct-150K_noun_verb/conversation_58k_instruction_verb_noun_0.html">0</a>, <a href="images/LLaVA-Instruct-150K_noun_verb/conversation_58k_instruction_verb_noun_20.html">20</a>, <a href="images/LLaVA-Instruct-150K_noun_verb/conversation_58k_instruction_verb_noun_50.html">50</a>]
</figcaption>
</figure>
<figure style="text-align: center;">
<img id="teaser" width="100%" src="images/LLaVA-Instruct-150K_noun_verb/detail_23k_instruction_verb_noun_0.png">
<figcaption>
Instruction: Detailed Description [<a href="images/LLaVA-Instruct-150K_noun_verb/detail_23k_instruction_verb_noun_0.html">0</a>]
</figcaption>
</figure>
<figure style="text-align: center;">
<img id="teaser" width="100%" src="images/LLaVA-Instruct-150K_noun_verb/complex_reasoning_77k_instruction_verb_noun_50.png">
<figcaption>
Instruction: Complex Reasoning [<a href="images/LLaVA-Instruct-150K_noun_verb/complex_reasoning_77k_instruction_verb_noun_0.html">0</a>, <a href="images/LLaVA-Instruct-150K_noun_verb/complex_reasoning_77k_instruction_verb_noun_20.html">20</a>, <a href="images/LLaVA-Instruct-150K_noun_verb/complex_reasoning_77k_instruction_verb_noun_50.html">50</a>]
</figcaption>
</figure>
</div>
</div>
<div class="columns is-centered has-text-centered">
<div class="column is-six-fifths" style="display: flex; align-items: flex-start; justify-content: center;">
<figure style="text-align: center;">
<img id="teaser" width="100%" src="images/LLaVA-Instruct-150K_noun_verb/conversation_58k_response_verb_noun_50.png">
<figcaption>
Response: Conversation [<a href="images/LLaVA-Instruct-150K_noun_verb/conversation_58k_response_verb_noun_0.html">0</a>, <a href="images/LLaVA-Instruct-150K_noun_verb/conversation_58k_response_verb_noun_20.html">20</a>, <a href="images/LLaVA-Instruct-150K_noun_verb/conversation_58k_response_verb_noun_50.html">50</a>]
</figcaption>
</figure>
<figure style="text-align: center;">
<img id="teaser" width="100%" src="images/LLaVA-Instruct-150K_noun_verb/detail_23k_response_verb_noun_50.png">
<figcaption>
Response: Detailed Description [<a href="images/LLaVA-Instruct-150K_noun_verb/detail_23k_response_verb_noun_0.html">0</a>, <a href="images/LLaVA-Instruct-150K_noun_verb/detail_23k_response_verb_noun_20.html">20</a>, <a href="images/LLaVA-Instruct-150K_noun_verb/detail_23k_response_verb_noun_50.html">50</a>]
</figcaption>
</figure>
<figure style="text-align: center;">
<img id="teaser" width="100%" src="images/LLaVA-Instruct-150K_noun_verb/complex_reasoning_77k_response_verb_noun_50.png">
<figcaption>
Response: Complex Reasoning [<a href="images/LLaVA-Instruct-150K_noun_verb/complex_reasoning_77k_response_verb_noun_0.html">0</a>, <a href="images/LLaVA-Instruct-150K_noun_verb/complex_reasoning_77k_response_verb_noun_20.html">20</a>, <a href="images/LLaVA-Instruct-150K_noun_verb/complex_reasoning_77k_response_verb_noun_50.html">50</a>]
</figcaption>
</figure>
</div>
</div>
</div>
</div>
</section>
<section class="section">
<!-- Results. -->
<div class="columns is-centered has-text-centered">
<div class="column is-six-fifths">
<h2 class="title is-3"><img id="painting_icon" width="3%" src="https://cdn-icons-png.flaticon.com/512/5379/5379860.png"> LLaVA: Large Language-and-Vision Assistant</h2>
</div>
</div>
<!-- </div> -->
<!--/ Results. -->
<div class="container is-max-desktop">
<div class="columns is-centered">
<div class="column is-full-width">
<div class="content has-text-justified">
<p>
LLaVa connects pre-trained <a href="https://openai.com/research/clip">CLIP ViT-L/14</a> visual encoder and large language model <a href="https://github.com/lm-sys/FastChat">Vicuna</a>, using a simple projection matrix. We consider a two-stage instruction-tuning procedure:
<ul type="1">
<li><b>Stage 1: Pre-training for Feature Alignment</b>. <span style="font-size: 95%;">Only the projection matrix is updated, based on a subset of CC3M.</span></li>
<li><b>Stage 2: Fine-tuning End-to-End</b>. <span style="font-size: 95%;">Both the projection matrix and LLM are updated for two different use senarios:
<ul type="1">
<li> <b>Visual Chat</b>: LLaVA is fine-tuned on our generated multimodal instruction-following data for daily user-oriented applications.
<li> <b>Science QA</b>: LLaVA is fine-tuned on this multimodal reasonsing dataset for the science domain.</span></li>
</ul>
</ul>
Please check out our
<a href="https://github.com/haotian-liu/LLaVA/blob/main/docs/MODEL_ZOO.md">[Model Zoo]</a>.
</p>
</div>
<centering>
<div style="text-align: center;">
<img id="teaser" width="70%" src="images/llava_arch.png">
</div>
</centering>
</div>
</div>
</section>
<section class="section">
<!-- Results. -->
<div class="columns is-centered has-text-centered">
<div class="column is-six-fifths">
<h2 class="title is-3"><img id="painting_icon" width="3%" src="https://cdn-icons-png.flaticon.com/512/3515/3515174.png"> Performance</h2>
</div>
</div>
<!-- </div> -->
<!--/ Results. -->
<div class="container is-max-desktop">
<!-- Grounedtext2img. -->
<div class="columns is-centered">
<div class="column is-full-width">
<h2 class="title is-4"><img id="painting_icon" width="4%" src="https://cdn-icons-png.flaticon.com/512/1698/1698535.png"> <span style="font-size: 100%;">Visual Chat:</span> Towards building multimodal GPT-4 level chatbot </h2>
<div>
<a href="https://plotly.com/~lichunyuan24/5/?share_key=d78QObaCAYCIy8PJpe3gd1" target="_blank" title="llava_gpt4_pie" style="display: block; text-align: center;"> <img id="painting_icon" width="90%" src="images/pie_llava_gpt4.png"> </a>
</div>
<p style="font-family:Times New Roman"><b>An evaluation dataset with 30 unseen images is constructed: each image is assocaited with three types of instructions: conversation, detailed description and complex reasoning. This leads to 90 new language-image instructions, on which we test LLaVA and GPT-4, and use GPT-4 to rate their responses from score 1 to 10. The summed score and relative score per type is reported. Overall, LLaVA achieves 85.1% relative score compared with GPT-4, indicating the effectinvess of the proposed self-instruct method in multimodal settings</b>
</div>
</div>
<!-- Grounedtext2img. -->
<div class="columns is-centered">
<div class="column is-full-width">
<h2 class="title is-4"> <img id="painting_icon" width="3%" src="https://scienceqa.github.io/img/logo.png"><span style="font-size: 100%;"> Science QA:</span> New SoTA with the synergy of LLaVA with GPT-4</h2>
<div>
<a href="https://plotly.com/~lichunyuan24/1/?share_key=v4opE3TJpxqQ08RYsDD4iv" target="_blank" title="Plot 1" style="display: block; text-align: center;"><img id="painting_icon" width="65%" src="images/bar_llava_gpt4_scienceqa.png"></a>
<script data-plotly="lichunyuan24:1" sharekey-plotly="v4opE3TJpxqQ08RYsDD4iv" src="https://plotly.com/embed.js" async></script>
</div>
<p style="font-family:Times New Roman"><b>LLaVA alones achieve 90.92%. We use the text-only GPT-4 as the judge, to predict the final answer based on its own previous answers and the LLaVA answers. This "GPT-4 as judge" scheme yields a new SOTA 92.53%.</b>
</div>
</div>
</section>
<section class="section">
<div class="columns is-centered has-text-centered">
<div class="column is-six-fifths">
<h2 class="title is-3"> Examples on Visual Instruction Following</h2>
</div>
</div>
<div class="columns is-centered has-text-centered">
<div class="column is-six-fifths">
<h2 class="title is-4">Visual Reasoning on two examples from <a href="https://arxiv.org/abs/2303.08774">OpenAI GPT-4 Technical Report</a></h2>
</div>
</div>
<div class="columns is-centered has-text-centered">
<div class="column is-six-fifths">
<img id="teaser" width="35%" src="images/cmp_ironing.png">
<img id="teaser" width="38%" src="images/cmp_chicken_nugget.png">
</div>
</div>
<div class="columns is-centered has-text-centered">
<div class="column is-six-fifths">
<h2 class="title is-4">Optical character recognition (OCR)</a></h2>
</div>
</div>
<div class="columns is-centered has-text-centered">
<div class="column is-six-fifths" style="display: flex; align-items: flex-start; justify-content: center;">
<img id="teaser" width="32%" src="images/ocr/llava_example_cvpr2023.png">
<img id="teaser" width="32%" src="images/ocr/llava_example_cvinw_logo.png">
<img id="teaser" width="32%" src="images/ocr/example_llava_exmaple.png">
</div>
</div>
<div class="container mt-5">
<!-- <h2 class="text-center mb-5">Who's GPT-4's favorite? Battles between State-of-the-Art Chatbots</h2> -->
<!-- Selection -->
<div class="form-row" style="justify-content: flex-end;">
<div class="form-group col-md-1">
<div class="col-md-2" style="width: 100%"><label> </label></div>
<div class="btn-group" role="group" aria-label="Left and Right Controller"
style="width: 100%;align-items: flex-end;justify-content: center;flex-direction: row;display: flex;">
<button type="button" class="form-control btn btn-primary" id="prev-question"><i
class="material-icons">keyboard_arrow_left</i></button>
<button type="button" class="form-control btn btn-primary" id="next-question"><i
class="material-icons">keyboard_arrow_right</i></button>
</div>
</div>
</div>
<!-- Question Card -->
<div style="display: flex; justify-content: center; align-items: center;">
<div class="card mb-4" style="width: 100%; display: flex; align-items: center;">
<!-- <p><b>Description:</b> Monalisa is a famous painting by Leonardo da Vinci. </p> -->
<div class="card-body" id="selected-question" style="display: flex; height: 80vh;">
<div class="chat-history">
<!-- Add your chat messages here -->
</div>
</div>
</div>
</div>
</div>
</section>
<section class="section" id="BibTeX">
<div class="container is-max-desktop content">
<h2 class="title">BibTeX</h2>
<pre><code>
@misc{liu2023improvedllava,
author={Liu, Haotian and Li, Chunyuan and Li, Yuheng and Lee, Yong Jae},
title={Improved Baselines with Visual Instruction Tuning},
publisher={arXiv:2310.03744},
year={2023},
}
@inproceedings{liu2023llava,
author = {Liu, Haotian and Li, Chunyuan and Wu, Qingyang and Lee, Yong Jae},
title = {Visual Instruction Tuning},
booktitle = {NeurIPS},
year = {2023}
}
</code></pre>
</div>
</section>
<section class="section" id="Acknowledgement">
<div class="container is-max-desktop content">
<h2 class="title">Acknowledgement</h2>
<p>
This website is adapted from <a
href="https://github.com/nerfies/nerfies.github.io">Nerfies</a>, licensed under a <a rel="license" href="http://creativecommons.org/licenses/by-sa/4.0/">Creative
Commons Attribution-ShareAlike 4.0 International License</a>. We thank the LLaMA team for giving us access to their models, and open-source projects, including Alpaca and Vicuna.
</p>
<p>
<b>Usage and License Notices</b>: The data, code and checkpoint is intended and licensed for research use only. They are also restricted to uses that follow the license agreement of CLIP, LLaMA, Vicuna and GPT-4. The dataset is CC BY NC 4.0 (allowing only non-commercial use) and models trained using the dataset should not be used outside of research purposes.
</p>
<p>
<a href='https://github.com/Computer-Vision-in-the-Wild/'><img id="painting_icon" width="10%" src="https://avatars.githubusercontent.com/u/97258247?s=200&v=4"></a>
Related Links:
<a href='https://react-vl.github.io/'>[REACT]</a>
<a href='https://gligen.github.io/'>[GLIGEN]</a>
<a href='https://github.com/Computer-Vision-in-the-Wild/'>[Computer Vision in the Wild (CVinW)]</a>
<a href='https://instruction-tuning-with-gpt-4.github.io/'>[Insutrction Tuning with GPT-4]</a>
</p>
</div>
</section>
<script>
// Handle message showing
function createChatRow(sender, text, imageSrc) {
var article = document.createElement("article");
article.className = "media"
var figure = document.createElement("figure");
figure.className = "media-left";
var span = document.createElement("span");
span.className = "icon is-large";
var icon = document.createElement("i");
icon.className = "fas fas fa-2x" + (sender === "User" ? " fa-user " : sender === "LLaVA" ? " fa-robot" : "");
var media = document.createElement("div");
media.className = "media-content";
var content = document.createElement("div");
content.className = "content";
var para = document.createElement("p");
// wrap text in pre tag to preserve whitespace and line breaks
var pre_text = document.createElement("pre");
pre_text.style = "background-color: white; font-size: 18px; font-family: Arial; padding: 0; margin: 0; white-space: pre-wrap; word-wrap: break-word;";
var paraText = document.createTextNode(text);
pre_text.appendChild(paraText);
var strong = document.createElement("strong");
strong.innerHTML = sender;
var br = document.createElement("br");
para.appendChild(strong);
para.appendChild(br);
para.appendChild(pre_text);
// Add image if imageSrc is provided
if (imageSrc) {
var img = document.createElement("img");
img.src = imageSrc;
img.style = "max-width: 100%; max-height: 300px;"; // Adjust the style as needed
para.appendChild(img);
}
content.appendChild(para);
media.appendChild(content);
span.appendChild(icon);
figure.appendChild(span);
if (sender !== "Description") {
article.appendChild(figure);
};
article.appendChild(media);
return article;
}
function addMessageToChatHistory(sender, message, imageSrc) {
const chatHistory = document.querySelector('.chat-history');
const chatRow = createChatRow(sender, message, imageSrc);
chatHistory.appendChild(chatRow);
chatHistory.scrollTop = chatHistory.scrollHeight;
}
function clearChatHistory() {
const chatHistory = document.querySelector('.chat-history');
chatHistory.innerHTML = "";
}
//
const conversations = [
{
"description": "monalisa",
"turns": [
// ["Description", "Please read the description and answer the question."],
["User", "", "/static/images/monalisa.jpg"],
["User", "Do you know who drew this painting?"],
["LLaVA",
"The painting depicts a woman, commonly believed to be Mona Lisa, the famous artwork by Leonardo da Vinci. " +
"It is a portrait painting that showcases the woman's enigmatic smile and has become one of the most famous and iconic art pieces in the world. " +
"The original work is displayed in the Louvre Museum in Paris, and it is known for its intricate details, use of oil paint, and the artist's innovative techniques that contributed to its enduring appeal and mystery."
]
]
},
{
"description": "monalisa with dog head",
"turns": [
["User", "", "/static/images/monalisa-fun.jpg"],
["User", "Do you know who drew this painting?"],
["LLaVA", "The painting depicts a dog in a humorous situation, where it appears to be wearing a woman's dress and standing in front of a landscape. Although the artist of the painting is not explicitly identified, it could be a reference to the famous artist Da Vinci, known for his artistic works, including the Mona Lisa. The painting is likely a creative and comical take on the traditional portrait style, replacing a human figure with a dog dressed in a woman's clothing, making it an interesting and amusing visual piece."]
]
},
{
"description": "Titanic Rose and Jack",
"turns": [
["User", "", "/static/images/titanic.jpg"],
["User", "What's the ending of this movie?"],
["LLaVA", "In the image, a young woman is leaning on a man in front of a beautiful sunset, with both of them standing on a boat. They appear to be enjoying a romantic moment together. The scene suggests that they could be depicted as the characters Jack and Rose from the popular movie Titanic. In the movie, their romance blossoms aboard the fictional ocean liner Titanic, with the pair ultimately sharing a passionate kiss as the ship sinks into the ocean. The ending of the movie is known for its emotional and heartfelt scenes, where the characters are forced to say goodbye to each other as they are separated by the sinking ship. The image evokes a sense of romance and nostalgia, paying tribute to the iconic love story portrayed in the movie Titanic."]
]
},
{
"description": "Fridge",
"turns": [
["User", "", "/static/images/fridge.jpg"],
["User", "What are the meals that I can cook with these?"],
["LLaVA", "With the variety of food items stored in the refrigerator, you can prepare several meals. For example, you can create a fruit salad using the strawberries, blueberries, and carrots. Additionally, you can make a delicious smoothie using the fruits and vegetables, which would be a healthy and nutritious snack or breakfast option. The milk and eggs can be used to create various dishes, such as a milk-based smoothie, a baked casserole, or scrambled eggs. The juice can also be used to make a fresh fruit and juice mix or as a refreshing homemade popsicle. The possibilities are vast, and the meals you can create will depend on your preferences and dietary needs."],
["User", "I would like to do the fruit salad. Show me the recipe."],
["LLaVA",
`Certainly! Here's a simple fruit salad recipe using the items in your refrigerator:
Ingredients:
- 2 cups fresh strawberries, sliced
- 1 cup fresh blueberries
- 1 large carrot, grated
- Juice of half a lemon
- A handful of chopped fresh parsley or mint
- A few ice cubes
- Optional: honey or maple syrup (adjust to taste)
Instructions:
1. In a large bowl, combine the sliced strawberries, blueberries, and carrot. Gently toss them together to mix.
2. Drizzle the juice of half a lemon over the fruit and vegetables to prevent them from oxidizing and add a refreshing citrus flavor.
3. Sprinkle the chopped fresh parsley or mint over the fruit and gently toss once more.
4. If desired, add a drizzle of honey or maple syrup for a touch of sweetness. Adjust the amount according to your taste preferences.
5. Cover the bowl and refrigerate the fruit salad for at least 30 minutes or up to a few hours. This allows the flavors to meld and creates a more refreshing salad.
6. Serve the fruit salad in cups or bowls, garnished with a sprinkle of fresh parsley or mint, if desired.
This fruit salad recipe is perfect for a healthy snack or side dish, and with the variety of ingredients available in your refrigerator, it should be easy to put together quickly.`]]
},
{
"description": "Beautiful View",
"turns": [
["User", "", "/static/images/view.jpg"],
["User", "What are the things I should be cautious about when I visit here?"],
["LLaVA", "When visiting this peaceful location with a pier extending over a serene lake, surrounded by mountains, there are several things to be cautious about. First, pay attention to the weather conditions, as sudden changes in weather, especially strong winds or storms, can cause the water to become rough and pose risks to the stability of the pier. Second, be mindful of the structural integrity of the pier; avoid overloading it with too many people or excessive weight, as this could potentially damage the pier or cause it to collapse. Additionally, be aware of the surrounding wildlife and respect their space; do not harm or disturb them in any way. Finally, if you decide to go fishing, ensure that you adhere to any local fishing regulations and use appropriate fishing techniques to keep the lake ecosystem healthy and maintain the balance of the food chain."],
["User", "Compose an engaging travel blog post about my trip to this place, highlighting the beautiful sceneries, joyful experiences, and include possible anecdotes."],
["LLaVA",
`Traveling to this picturesque location with a serene lake and mountains in the background was a refreshing and rejuvenating experience. The pier extending over the calm water provided an excellent vantage point from which to appreciate the breathtaking scenery. As I stood on the pier, I couldn't help but feel a deep connection with nature, taking a moment to soak in the peaceful atmosphere.
One of the highlights of my trip was undoubtedly the fishing experience. The area is teeming with life, and I was thrilled to land a sizeable catch, despite the modest size of the lake. The joy of fishing in such a beautiful setting was truly rewarding, and it allowed me to take a break from my busy life and truly immerse myself in the tranquility of nature.
While exploring the surrounding area, I came across a family of birds that had built a nest close to the pier, adding to the charm of the location. Interacting with the wildlife and observing their behavior was an enriching experience that I'll cherish for years to come.
In conclusion, this idyllic destination provided me with an opportunity to unwind and recharge, surrounded by mesmerizing natural beauty and the gentle sounds of water and wildlife. If you're looking for a serene escape from the hustle and bustle of everyday life, this pier overlooking the lake is the perfect place to find solace and reconnect with nature.`
]
]
},
];
// The current image index
let currentIndex = 0;
// The function to update the displayed chat history
function update_dialog_demo() {
// Clear the chat history
clearChatHistory();
for (let i = 0; i < conversations[currentIndex].turns.length; i++) {
if (conversations[currentIndex].turns[i].length == 2) {
addMessageToChatHistory(conversations[currentIndex].turns[i][0], conversations[currentIndex].turns[i][1]);
}
else {
addMessageToChatHistory(conversations[currentIndex].turns[i][0], conversations[currentIndex].turns[i][1], conversations[currentIndex].turns[i][2]);
}
}
// scroll to the top of the chat history
document.querySelector('.chat-history').scrollTop = 0;
}
// Initialize the displayed image
update_dialog_demo();
// Event listeners for the buttons
document.getElementById('prev-question').addEventListener('click', () => {
currentIndex = (currentIndex - 1 + conversations.length) % conversations.length;
update_dialog_demo();
});
document.getElementById('next-question').addEventListener('click', () => {
currentIndex = (currentIndex + 1) % conversations.length;
update_dialog_demo();
});
</script>
</body>
</html>