Skip to content

Latest commit

 

History

History
44 lines (35 loc) · 5.27 KB

MODEL_ZOO.md

File metadata and controls

44 lines (35 loc) · 5.27 KB

Dense Matching Model Zoo

Model Pre-trained model type Paper Description Link all
PWarpCSFNet_WS pfpascal / spair [6] weakly-supervised pfpascal / spair
PWarpCSFNet_SS pfpascal / spair [6] strongly-supervised pfpascal / spair
PWarpCNCNet_WS pfpascal / spair [6] weakly-supervised pfpascal / spair
PWarpCNCNet_SS pfpascal / spair [6] strongly-supervised pfpascal / spair
PWarpCCATs_ft_features_SS pfpascal / spair [6] strongly-supervised pfpascal /
---- -------- ------- --- ---
PDCNet_plus megadepth [3], [5] PDC-Net+ model
---- -------- ------- --- ---
WarpCSemanticGLUNet spair [4] Original SemanticGLU-Net is finetuned using our warp consistency objective model
WarpCSemanticGLUNet pfpascal [4] Original SemanticGLU-Net is finetuned using our warp consistency objective model
SemanticGLUNet pfpascal [4] Original SemanticGLU-Net is finetuned using warp supervision model
WarpCRANSACFlow megadepth [4] model
WarpCGLUNet megadepth / megadepth_stage1 [4] megadepth / megadepth_stage1
GLUNet_star megadepth / megadepth_stage1 [4] Baseline for WarpCGLU-Net, trained with warp-supervision loss only megadepth / megadepth_stage1
---- -------- ------- --- ---
PDCNet megadepth [3] model
GLUNet_GOCor_star megadepth [3] corresponds to GLU-Net-GOCor* in PDCNet model
---- -------- ------- --- ---
GLUNet_GOCor dynamic [2] model
GLUNet_GOCor static [2] model
PWCNet_GOCor chairs_things_ft_sintel [2] model
PWCNet_GOCor chairs_things [2] model
GLUNet dynamic [2] model
---- -------- ------- --- ---
GLUNet static (CityScape-DPED-ADE) [1] model
SemanticGLUNet static (CityScape-DPED-ADE) [1] model

To download all of them, run the command bash assets/download_pre_trained_models.sh.

All networks are created in 'model_selection.py'. Weights should be put in pre_trained_models/



Evaluation of WarpCRANSACFlow:

The pre-trained weights can directly be used in the RANSAC-Flow repo.