-
Notifications
You must be signed in to change notification settings - Fork 0
/
index.html
717 lines (385 loc) · 22 KB
/
index.html
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539
540
541
542
543
544
545
546
547
548
549
550
551
552
553
554
555
556
557
558
559
560
561
562
563
564
565
566
567
568
569
570
571
572
573
574
575
576
577
578
579
580
581
582
583
584
585
586
587
588
589
590
591
592
593
594
595
596
597
598
599
600
601
602
603
604
605
606
607
608
609
610
611
612
613
614
615
616
617
618
619
620
621
622
623
624
625
626
627
628
629
630
631
632
633
634
635
636
637
638
639
640
641
642
643
644
645
646
647
648
649
650
651
652
653
654
655
656
657
658
659
660
661
662
663
664
665
666
667
668
669
670
671
672
673
674
675
676
677
678
679
680
681
682
683
684
685
686
687
688
689
690
691
692
693
694
695
696
697
698
699
700
701
702
703
704
705
706
707
708
709
710
711
712
713
714
715
716
<!DOCTYPE html>
<html lang="en-us">
<head>
<meta charset="UTF-8">
<meta name="viewport" content="width=device-width, initial-scale=1">
<meta http-equiv="X-UA-Compatible" content="IE=edge">
<meta name="generator" content="Hugo 0.74.3 with theme Tranquilpeak 0.4.8-BETA">
<meta name="author" content="Linlin Li">
<meta name="keywords" content="">
<meta name="description" content="Hugo tranquilpeak theme demo">
<meta property="og:description" content="Hugo tranquilpeak theme demo">
<meta property="og:type" content="website">
<meta property="og:title" content="Linlin Li's Data Science Project Portfolio">
<meta name="twitter:title" content="Linlin Li's Data Science Project Portfolio">
<meta property="og:url" content="https://linlin-li-1.github.io/">
<meta property="twitter:url" content="https://linlin-li-1.github.io/">
<meta property="og:site_name" content="Linlin Li's Data Science Project Portfolio">
<meta property="og:description" content="Hugo tranquilpeak theme demo">
<meta name="twitter:description" content="Hugo tranquilpeak theme demo">
<meta property="og:locale" content="en-us">
<meta name="twitter:card" content="summary">
<meta property="og:image" content="https://www.gravatar.com/avatar/1b1a0de53499fb41484c23d568bdbaea?s=640">
<meta property="twitter:image" content="https://www.gravatar.com/avatar/1b1a0de53499fb41484c23d568bdbaea?s=640">
<title>Linlin Li's Data Science Project Portfolio</title>
<link rel="icon" href="https://linlin-li-1.github.io/favicon.png">
<link rel="alternate" type="application/rss+xml" title="RSS" href="https://linlin-li-1.github.io/index.xml">
<link rel="canonical" href="https://linlin-li-1.github.io/">
<link rel="stylesheet" href="https://cdnjs.cloudflare.com/ajax/libs/font-awesome/4.7.0/css/font-awesome.min.css" integrity="sha256-eZrrJcwDc/3uDhsdt61sL2oOBY362qM3lon1gyExkL0=" crossorigin="anonymous" />
<link rel="stylesheet" href="https://cdnjs.cloudflare.com/ajax/libs/fancybox/2.1.4/jquery.fancybox.min.css" integrity="sha256-vuXZ9LGmmwtjqFX1F+EKin1ThZMub58gKULUyf0qECk=" crossorigin="anonymous" />
<link rel="stylesheet" href="https://cdnjs.cloudflare.com/ajax/libs/fancybox/2.1.4/helpers/jquery.fancybox-thumbs.min.css" integrity="sha256-SEa4XYAHihTcEP1f5gARTB2K26Uk8PsndQYHQC1f4jU=" crossorigin="anonymous" />
<link rel="stylesheet" href="https://linlin-li-1.github.io/css/style-twzjdbqhmnnacqs0pwwdzcdbt8yhv8giawvjqjmyfoqnvazl0dalmnhdkvp7.min.css" />
</head>
<body>
<div id="blog">
<header id="header" data-behavior="1">
<i id="btn-open-sidebar" class="fa fa-lg fa-bars"></i>
<div class="header-title">
<a class="header-title-link" href="https://linlin-li-1.github.io/">Linlin Li's Data Science Project Portfolio</a>
</div>
<a class="header-right-picture "
href="https://linlin-li-1.github.io/#about">
<img class="header-picture" src="https://www.gravatar.com/avatar/1b1a0de53499fb41484c23d568bdbaea?s=90" alt="Author's picture" />
</a>
</header>
<nav id="sidebar" data-behavior="1">
<div class="sidebar-container">
<div class="sidebar-profile">
<a href="https://linlin-li-1.github.io/#about">
<img class="sidebar-profile-picture" src="https://www.gravatar.com/avatar/1b1a0de53499fb41484c23d568bdbaea?s=110" alt="Author's picture" />
</a>
<h4 class="sidebar-profile-name">Linlin Li</h4>
<h5 class="sidebar-profile-bio">Data Scientist @ <strong>DISH Network</strong> | Master’s in Statistical Science @ <strong>Duke</strong></h5>
</div>
<ul class="sidebar-buttons">
<li class="sidebar-button">
<a class="sidebar-button-link " href="https://linlin-li-1.github.io/">
<i class="sidebar-button-icon fa fa-lg fa-home"></i>
<span class="sidebar-button-desc">Home</span>
</a>
</li>
<li class="sidebar-button">
<a class="sidebar-button-link " href="https://linlin-li-1.github.io/categories">
<i class="sidebar-button-icon fa fa-lg fa-bookmark"></i>
<span class="sidebar-button-desc">Categories</span>
</a>
</li>
<li class="sidebar-button">
<a class="sidebar-button-link " href="https://linlin-li-1.github.io/archives">
<i class="sidebar-button-icon fa fa-lg fa-archive"></i>
<span class="sidebar-button-desc">Archives</span>
</a>
</li>
<li class="sidebar-button">
<a class="sidebar-button-link " href="https://linlin-li-1.github.io/#about">
<i class="sidebar-button-icon fa fa-lg fa-question"></i>
<span class="sidebar-button-desc">About</span>
</a>
</li>
</ul>
<ul class="sidebar-buttons">
<li class="sidebar-button">
<a class="sidebar-button-link " href="mailto:[email protected]" target="_blank" rel="noopener">
<i class="sidebar-button-icon fa fa-lg fa-envelope"></i>
<span class="sidebar-button-desc">Email</span>
</a>
</li>
<li class="sidebar-button">
<a class="sidebar-button-link " href="https://github.com/Linlin-Li-1" target="_blank" rel="noopener">
<i class="sidebar-button-icon fa fa-lg fa-github"></i>
<span class="sidebar-button-desc">GitHub</span>
</a>
</li>
<li class="sidebar-button">
<a class="sidebar-button-link " href="https://www.linkedin.com/in/linlin-li/" target="_blank" rel="noopener">
<i class="sidebar-button-icon fa fa-lg fa-linkedin"></i>
<span class="sidebar-button-desc">LinkedIn</span>
</a>
</li>
</ul>
<ul class="sidebar-buttons">
</ul>
</div>
</nav>
<div id="main" data-behavior="1"
class="
hasCoverMetaIn
">
<section class="postShorten-group main-content-wrap">
<article class="postShorten postShorten--thumbnailimg-left" itemscope itemType="http://schema.org/BlogPosting">
<div class="postShorten-wrap">
<div class="postShorten-header">
<h1 class="postShorten-title" itemprop="headline">
<a class="link-unstyled" href="https://linlin-li-1.github.io/2020/11/two-stage-cnn-based-3d-object-classification/">
Two-stage CNN-based 3D Object Classification
</a>
</h1>
<div class="postShorten-meta post-meta">
<time itemprop="datePublished" datetime="2020-11-28T22:40:39-05:00">
November 28, 2020
</time>
<span>in</span>
<a class="category-link" href="https://linlin-li-1.github.io/categories/project">Project</a>
</div>
</div>
<div class="postShorten-excerpt" itemprop="articleBody">
In this post I’ll be discussing my final project for ECE 685: Deep Learning, a course I took at Duke University. For this project, Jiawei Chen and I proposed a two-stage algorithm to improve classification accuracy. You can find my Github repository for this blog here.
Convolutional Neural Networks (CNNs) have been used on 3D point clouds for object classification. However, due to the nature of the CNNs, classifiers, especially those CNN-based classifiers, are usually confused about objects that look alike.
<p>
<a href="https://linlin-li-1.github.io/2020/11/two-stage-cnn-based-3d-object-classification/" class="postShorten-excerpt_link link">Continue reading</a>
</p>
</div>
</div>
<a href="https://linlin-li-1.github.io/2020/11/two-stage-cnn-based-3d-object-classification/">
<div class="postShorten-thumbnailimg">
<img alt="" itemprop="image" src="https://i.postimg.cc/5Nc51xg3/pointcloud.png"/>
</div>
</a>
</article>
<article class="postShorten postShorten--thumbnailimg-left" itemscope itemType="http://schema.org/BlogPosting">
<div class="postShorten-wrap">
<div class="postShorten-header">
<h1 class="postShorten-title" itemprop="headline">
<a class="link-unstyled" href="https://linlin-li-1.github.io/2020/11/covid-19-analysis/">
COVID-19 Analysis
</a>
</h1>
<div class="postShorten-meta post-meta">
<time itemprop="datePublished" datetime="2020-11-17T17:20:39-05:00">
November 17, 2020
</time>
<span>in</span>
<a class="category-link" href="https://linlin-li-1.github.io/categories/project">Project</a>
</div>
</div>
<div class="postShorten-excerpt" itemprop="articleBody">
1. Background COVID-19, a disease caused by a new type of coronavirus, has become a major global human threat that has turned into a pandemic. During this period, the role of the immune system has attracted people's attention. Some researchers identified some important nutritional considerations for the prevention and management of COVID-19 diseases (Yasemin Ipek Ayseli et al., 2020). Based on these studies, some "experts" and articles have urged people to buy supplements or eat particular foods to enhance their immune system.
<p>
<a href="https://linlin-li-1.github.io/2020/11/covid-19-analysis/" class="postShorten-excerpt_link link">Continue reading</a>
</p>
</div>
</div>
<a href="https://linlin-li-1.github.io/2020/11/covid-19-analysis/">
<div class="postShorten-thumbnailimg">
<img alt="" itemprop="image" src="https://i.postimg.cc/zG1xmGPV/Coronavirus-CDC-645x645.jpg"/>
</div>
</a>
</article>
<article class="postShorten postShorten--thumbnailimg-left" itemscope itemType="http://schema.org/BlogPosting">
<div class="postShorten-wrap">
<div class="postShorten-header">
<h1 class="postShorten-title" itemprop="headline">
<a class="link-unstyled" href="https://linlin-li-1.github.io/2020/11/implementation-of-first-order-optimization-methods-pytorch/">
Implementation of First-order Optimization Methods (PyTorch)
</a>
</h1>
<div class="postShorten-meta post-meta">
<time itemprop="datePublished" datetime="2020-11-04T23:30:38-05:00">
November 4, 2020
</time>
<span>in</span>
<a class="category-link" href="https://linlin-li-1.github.io/categories/blog">Blog</a>
</div>
</div>
<div class="postShorten-excerpt" itemprop="articleBody">
In this post, I would like to share my implementation of several famous first-order optimization methods. I know that these methods have been implemented very well in many packages, but I hope my implementation can help you understand the ideas behind it.
Suppose we have \(N\) data examples and the parameters \(\mathbf{w} \in \mathcal{R}^D\).
For convenience, I first write a class named optimizer.
class optimizer: def __init__(self): pass def set_param(self, parameters): self.
<p>
<a href="https://linlin-li-1.github.io/2020/11/implementation-of-first-order-optimization-methods-pytorch/" class="postShorten-excerpt_link link">Continue reading</a>
</p>
</div>
</div>
<a href="https://linlin-li-1.github.io/2020/11/implementation-of-first-order-optimization-methods-pytorch/">
<div class="postShorten-thumbnailimg">
<img alt="" itemprop="image" src="https://i.postimg.cc/Rh3mb67D/optim.png"/>
</div>
</a>
</article>
<article class="postShorten postShorten--thumbnailimg-left" itemscope itemType="http://schema.org/BlogPosting">
<div class="postShorten-wrap">
<div class="postShorten-header">
<h1 class="postShorten-title" itemprop="headline">
<a class="link-unstyled" href="https://linlin-li-1.github.io/2020/10/image-classification-using-cnn-pytorch/">
Image Classification using CNN (PyTorch)
</a>
</h1>
<div class="postShorten-meta post-meta">
<time itemprop="datePublished" datetime="2020-10-23T04:17:45-04:00">
October 23, 2020
</time>
<span>in</span>
<a class="category-link" href="https://linlin-li-1.github.io/categories/blog">Blog</a>
</div>
</div>
<div class="postShorten-excerpt" itemprop="articleBody">
As we all know, insects are a major factor in the world's agricultural economy. Therefore, it is particularly important to prevent and control agricultural insects by using procedures such as dynamic surveys and real-time monitoring systems for insect population management. However, there are many insects in the farmland, and it takes a lot of time to be manually classified by insect experts. Since people without the knowledge of entomology cannot distinguish the types of insects, it is necessary to develop more rapid and effective methods to solve this problem.
<p>
<a href="https://linlin-li-1.github.io/2020/10/image-classification-using-cnn-pytorch/" class="postShorten-excerpt_link link">Continue reading</a>
</p>
</div>
</div>
<a href="https://linlin-li-1.github.io/2020/10/image-classification-using-cnn-pytorch/">
<div class="postShorten-thumbnailimg">
<img alt="" itemprop="image" src="https://miro.medium.com/max/1280/1*Fw-ehcNBR9byHtho-Rxbtw.gif"/>
</div>
</a>
</article>
<article class="postShorten postShorten--thumbnailimg-left" itemscope itemType="http://schema.org/BlogPosting">
<div class="postShorten-wrap">
<div class="postShorten-header">
<h1 class="postShorten-title" itemprop="headline">
<a class="link-unstyled" href="https://linlin-li-1.github.io/2020/10/dashboard-for-doctorates-awarded-in-the-united-states/">
Dashboard for Doctorates Awarded in the United States
</a>
</h1>
<div class="postShorten-meta post-meta">
<time itemprop="datePublished" datetime="2020-10-21T17:23:49-04:00">
October 21, 2020
</time>
<span>in</span>
<a class="category-link" href="https://linlin-li-1.github.io/categories/blog">Blog</a>
</div>
</div>
<div class="postShorten-excerpt" itemprop="articleBody">
I believe that for graduate students, what to do after graduation may not have been decided yet. Is it a good choice to continue to study for a PhD, or is it a wise choice to find a job in the industry? What will doctoral degrees bring to students? Which field of doctoral degrees are more popular?
To answer these questions, I found some historical data about doctorates awarded in the United States to display some information behind the data.
<p>
<a href="https://linlin-li-1.github.io/2020/10/dashboard-for-doctorates-awarded-in-the-united-states/" class="postShorten-excerpt_link link">Continue reading</a>
</p>
</div>
</div>
<a href="https://linlin-li-1.github.io/2020/10/dashboard-for-doctorates-awarded-in-the-united-states/">
<div class="postShorten-thumbnailimg">
<img alt="" itemprop="image" src="https://i.postimg.cc/x16rVs0H/Ph-D01-800x700.jpg"/>
</div>
</a>
</article>
<article class="postShorten postShorten--thumbnailimg-left" itemscope itemType="http://schema.org/BlogPosting">
<div class="postShorten-wrap">
<div class="postShorten-header">
<h1 class="postShorten-title" itemprop="headline">
<a class="link-unstyled" href="https://linlin-li-1.github.io/2020/10/data-extraction-in-json-format-through-star-wars-api/">
Data Extraction in JSON format through Star Wars API
</a>
</h1>
<div class="postShorten-meta post-meta">
<time itemprop="datePublished" datetime="2020-10-09T13:26:07-04:00">
October 9, 2020
</time>
<span>in</span>
<a class="category-link" href="https://linlin-li-1.github.io/categories/blog">Blog</a>
</div>
</div>
<div class="postShorten-excerpt" itemprop="articleBody">
Star Wars API (SWAPI) is the world's first quantitative Star Wars data set that can be used for programming. The developers have aggregated multiple types of entity data involved in the Star Wars series of movies. It also provides a Python programming language package, swapi-python, which is built by the author of swapi, Paul Hallett.
The six APIs correspond to six types of entities:
Films:http://swapi.co/api/films/1 People:http://swapi.co/api/people/1 Starships:http://swapi.co/api/starships/1 Vehicles:http://swapi.co/api/vehicles/1 Species:http://swapi.
<p>
<a href="https://linlin-li-1.github.io/2020/10/data-extraction-in-json-format-through-star-wars-api/" class="postShorten-excerpt_link link">Continue reading</a>
</p>
</div>
</div>
<a href="https://linlin-li-1.github.io/2020/10/data-extraction-in-json-format-through-star-wars-api/">
<div class="postShorten-thumbnailimg">
<img alt="" itemprop="image" src="https://i.postimg.cc/JngtGLG7/Star-wars-logo-new-tall.jpg"/>
</div>
</a>
</article>
<article class="postShorten postShorten--thumbnailimg-left" itemscope itemType="http://schema.org/BlogPosting">
<div class="postShorten-wrap">
<div class="postShorten-header">
<h1 class="postShorten-title" itemprop="headline">
<a class="link-unstyled" href="https://linlin-li-1.github.io/2020/10/web-scraping-for-preparing-training-data-for-machine-translation/">
Web Scraping for preparing training data for Machine Translation
</a>
</h1>
<div class="postShorten-meta post-meta">
<time itemprop="datePublished" datetime="2020-10-03T14:40:27-04:00">
October 3, 2020
</time>
<span>in</span>
<a class="category-link" href="https://linlin-li-1.github.io/categories/blog">Blog</a>
</div>
</div>
<div class="postShorten-excerpt" itemprop="articleBody">
During my internship at Birch.ai, we want to test and improve the performance of our machine translation model. To achieve this, we first need to obtain a foreign language data set and its corresponding English data set, and hope that these data sets are translated by humans rather than machine translations.
In this article, I would share my experience in scraping The New England Journal of Medicine from scratch using Python.
<p>
<a href="https://linlin-li-1.github.io/2020/10/web-scraping-for-preparing-training-data-for-machine-translation/" class="postShorten-excerpt_link link">Continue reading</a>
</p>
</div>
</div>
<a href="https://linlin-li-1.github.io/2020/10/web-scraping-for-preparing-training-data-for-machine-translation/">
<div class="postShorten-thumbnailimg">
<img alt="" itemprop="image" src="https://i.postimg.cc/4ypSGyJ4/web-scraping-big.jpg"/>
</div>
</a>
</article>
<div class="pagination-bar">
<ul class="pagination">
<li class="pagination-next">
<a class="btn btn--default btn--small" href="https://linlin-li-1.github.io/page/2/">
<span>OLDER POSTS</span>
<i class="fa fa-angle-right text-base icon-ml"></i>
</a>
</li>
<li class="pagination-number">page 1 of 2</li>
</ul>
</div>
</section>
<footer id="footer" class="main-content-wrap">
<span class="copyrights">
© 2021 Linlin Li. All Rights Reserved
</span>
</footer>
</div>
</div>
<div id="about">
<div id="about-card">
<div id="about-btn-close">
<i class="fa fa-remove"></i>
</div>
<img id="about-card-picture" src="https://www.gravatar.com/avatar/1b1a0de53499fb41484c23d568bdbaea?s=110" alt="Author's picture" />
<h4 id="about-card-name">Linlin Li</h4>
<div id="about-card-bio">Data Scientist @ <strong>DISH Network</strong> | Master’s in Statistical Science @ <strong>Duke</strong></div>
<div id="about-card-location">
<i class="fa fa-map-marker"></i>
<br/>
Denver, CO
</div>
</div>
</div>
<div id="cover" style="background-image:url('https://i.postimg.cc/xCkJPyMv/blue.jpg');"></div>
<script src="https://cdnjs.cloudflare.com/ajax/libs/jquery/2.2.4/jquery.min.js" integrity="sha256-BbhdlvQf/xTY9gja0Dq3HiwQF8LaCRTXxZKRutelT44=" crossorigin="anonymous"></script>
<script src="https://cdnjs.cloudflare.com/ajax/libs/highlight.js/9.12.0/highlight.min.js" integrity="sha256-/BfiIkHlHoVihZdc6TFuj7MmJ0TWcWsMXkeDFwhi0zw=" crossorigin="anonymous"></script>
<script src="https://cdnjs.cloudflare.com/ajax/libs/fancybox/2.1.7/js/jquery.fancybox.min.js" integrity="sha256-GEAnjcTqVP+vBp3SSc8bEDQqvWAZMiHyUSIorrWwH50=" crossorigin="anonymous"></script>
<script src="https://linlin-li-1.github.io/js/script-pcw6v3xilnxydl1vddzazdverrnn9ctynvnxgwho987mfyqkuylcb1nlt.min.js"></script>
<script lang="javascript">
window.onload = updateMinWidth;
window.onresize = updateMinWidth;
document.getElementById("sidebar").addEventListener("transitionend", updateMinWidth);
function updateMinWidth() {
var sidebar = document.getElementById("sidebar");
var main = document.getElementById("main");
main.style.minWidth = "";
var w1 = getComputedStyle(main).getPropertyValue("min-width");
var w2 = getComputedStyle(sidebar).getPropertyValue("width");
var w3 = getComputedStyle(sidebar).getPropertyValue("left");
main.style.minWidth = `calc(${w1} - ${w2} - ${w3})`;
}
</script>
<script>
$(document).ready(function() {
hljs.configure({ classPrefix: '', useBR: false });
$('pre.code-highlight > code, pre > code').each(function(i, block) {
if (!$(this).hasClass('codeblock')) {
$(this).addClass('codeblock');
}
hljs.highlightBlock(block);
});
});
</script>
</body>
</html>