forked from cselab/MARL_LES
-
Notifications
You must be signed in to change notification settings - Fork 0
/
plot_energy_modes_histrograms.py
executable file
·91 lines (80 loc) · 3.24 KB
/
plot_energy_modes_histrograms.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
#!/usr/bin/env python3
import re, argparse, numpy as np, glob, os
import matplotlib.pyplot as plt
from extractTargetFilesNonDim import gatherAllData
from extractTargetFilesNonDim import findAllParams
from extractTargetFilesNonDim import epsNuFromRe
colors_lines = ['#1f78b4', '#33a02c', '#ff7f00', '#e31a1c']
colors_hist = ['#a6cee3', '#b2df8a', '#fdbf6f', '#fb9a99']
nQoI = 8
h = 2 * np.pi / (16*16)
QoI = [ 'Time Step Size',
'Turbulent Kinetic Energy',
'Velocity Gradient',
'Velocity Gradient Stdev',
'Integral Length Scale',
]
doLogScale = True
def main_integral(path, nBlocks=32):
REs = findAllParams(path)
print(REs)
nRes, nBins = len(REs), nBlocks * 16//2 - 1
fig, axes = plt.subplots(1,8, sharey=False, figsize=[15, 3], frameon=False, squeeze=True)
#axes[0].set_xlabel(r'$k \eta$')
#axes[0].grid()
#axes[0].set_ylabel(r'$\frac{E(k)} {\eta u^2_\eta}$')
ci = 0
for i in range(1, nRes, 4):
eps, nu = epsNuFromRe(REs[i])
#print(REs[i])
data = gatherAllData(path, REs[i], eps, nu, nBins, fSkip=1)
leta, lint = np.power(nu**3 / eps, 0.25), np.mean(data['l_integral'])
Ekscal = np.power(nu**5 * eps, 0.25)
ci += 1
ck = 0
for k in range(0,15,2):
#print(data['spectra'].shape)
Ek = data['spectra'][:, k] / Ekscal
logEk = np.log(Ek)
avgLogEk, stdLogEk = np.mean(logEk, axis=0), np.std(logEk, axis=0)
minLogEk, maxLogEk = avgLogEk-3*stdLogEk, avgLogEk+3*stdLogEk
minEk, maxEk = np.exp(minLogEk), np.exp(maxLogEk)
color_l = colors_lines[ ci-1 ]
color_h = colors_hist[ ci-1 ]
if doLogScale:
bins = np.linspace(minLogEk, maxLogEk, num=100)
norml = 1 / (stdLogEk * np.sqrt(2*np.pi))
P = np.exp(-0.5*((bins-avgLogEk)/stdLogEk)**2) * norml
axes[ck].plot(bins, P, '--',color=color_l)
bins = np.linspace(minLogEk, maxLogEk, num=20)
axes[ck].hist(logEk, bins=bins, density=True,
log=False, color=color_h, label=None)
else:
bins = np.geomspace(minEk, maxEk, num=20)
axes[ck].hist(Ek, bins=bins, density=True,
log=True, color=color_h, label=None)
#
ck += 1
#for ax in axes: ax.set_xscale("log")
for ax in axes: ax.set_yticks([])
for ax in axes: ax.set_yticklabels([])
k = 1
for ax in axes:
ax.set_title(r'$k = %d \pi / L$' % (2*k) )
ax.set_xlabel(r'$\log\left[ E(k) \,/\, \eta u^2_\eta\right]$')
k += 2
axes[0].set_ylabel(r'$\mathcal{P}\left[\,\log\left( E \,/\, \eta u^2_\eta\right)\right]$')
#axes[1].set_xlabel(r'$k$')
#axes[1].set_ylabel(r'$1 - CDF(E)$')
#axes[1].set_xlim([1,63])
#axes[1].set_ylim([0.5, 1e-3])
#axes[0].legend(loc='lower left', ncol=3)
fig.tight_layout()
plt.show()
if __name__ == '__main__':
parser = argparse.ArgumentParser(
description = "Compute a target file for RL agent from DNS data.")
parser.add_argument('path',
help="Simulation directory containing the 'Analysis' folder")
args = parser.parse_args()
main_integral(args.path)