Skip to content

Latest commit

 

History

History
40 lines (26 loc) · 1.58 KB

README.md

File metadata and controls

40 lines (26 loc) · 1.58 KB

Team 4

Members: Sergio Casas Pastor, Sanket Biswas, Josep Brugués i Pujolràs

Week 3

The tasks for the second week include:

  • Filter noise with linear or non-linear filters.

  • On denoised images, detect box with overlapping text, and apply OCR to get the text. Test query system using QSD1-W2 using only text.

  • Implement texture descriptors, and test them using QSD1-W2 using only texture descriptors.

  • Combine descriptors (text + color, text + texture, texture + color, text + color + texture) and test the retrieval on QSD1-W3.

  • Repeat the previous analysis with QSD2-W3 (remove noise, remove background, find 1 or 2 paintings and return the correspondences.

Slides for Week 3 are available here: Slides

How to run

main.py <querySetPath> <backgroundRemoval> <textRemoval> <textRemovalMethod> <k> 

The querySetPath parameter indicates the location of the query set images.

The backgroundRemoval parameter indicates if background has to be removed from the query set images.

  • True: background removal
  • False: no background removal.

The textRemoval parameter indicates if the text has to be removed from the query set images.

  • True: text removal
  • False: no text removal.

The textRemovalMethod parameter indicates the method used for text detection:

  • 1 : text detection based on color segmentation
  • 2 : text detection based on morphology operations
  • 3 : text detection based on EAST opencv neural network

The k parameter is used to indicate the number of top results that need to be saved.