forked from huggingface/transformers
-
Notifications
You must be signed in to change notification settings - Fork 0
/
hubconf.py
187 lines (162 loc) · 7.23 KB
/
hubconf.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
from pytorch_pretrained_bert.tokenization import BertTokenizer
from pytorch_pretrained_bert.modeling import (
BertModel,
BertForNextSentencePrediction,
BertForMaskedLM,
BertForMultipleChoice,
BertForPreTraining,
BertForQuestionAnswering,
BertForSequenceClassification,
BertForTokenClassification,
)
dependencies = ['torch', 'tqdm', 'boto3', 'requests', 'regex']
# A lot of models share the same param doc. Use a decorator
# to save typing
bert_docstring = """
Params:
pretrained_model_name_or_path: either:
- a str with the name of a pre-trained model to load
. `bert-base-uncased`
. `bert-large-uncased`
. `bert-base-cased`
. `bert-large-cased`
. `bert-base-multilingual-uncased`
. `bert-base-multilingual-cased`
. `bert-base-chinese`
- a path or url to a pretrained model archive containing:
. `bert_config.json` a configuration file for the model
. `pytorch_model.bin` a PyTorch dump of a BertForPreTraining
instance
- a path or url to a pretrained model archive containing:
. `bert_config.json` a configuration file for the model
. `model.chkpt` a TensorFlow checkpoint
from_tf: should we load the weights from a locally saved TensorFlow
checkpoint
cache_dir: an optional path to a folder in which the pre-trained models
will be cached.
state_dict: an optional state dictionnary
(collections.OrderedDict object) to use instead of Google
pre-trained models
*inputs, **kwargs: additional input for the specific Bert class
(ex: num_labels for BertForSequenceClassification)
"""
def _append_from_pretrained_docstring(docstr):
def docstring_decorator(fn):
fn.__doc__ = fn.__doc__ + docstr
return fn
return docstring_decorator
def bertTokenizer(*args, **kwargs):
"""
Instantiate a BertTokenizer from a pre-trained/customized vocab file
Args:
pretrained_model_name_or_path: Path to pretrained model archive
or one of pre-trained vocab configs below.
* bert-base-uncased
* bert-large-uncased
* bert-base-cased
* bert-large-cased
* bert-base-multilingual-uncased
* bert-base-multilingual-cased
* bert-base-chinese
Keyword args:
cache_dir: an optional path to a specific directory to download and cache
the pre-trained model weights.
Default: None
do_lower_case: Whether to lower case the input.
Only has an effect when do_wordpiece_only=False
Default: True
do_basic_tokenize: Whether to do basic tokenization before wordpiece.
Default: True
max_len: An artificial maximum length to truncate tokenized sequences to;
Effective maximum length is always the minimum of this
value (if specified) and the underlying BERT model's
sequence length.
Default: None
never_split: List of tokens which will never be split during tokenization.
Only has an effect when do_wordpiece_only=False
Default: ["[UNK]", "[SEP]", "[PAD]", "[CLS]", "[MASK]"]
Example:
>>> sentence = 'Hello, World!'
>>> tokenizer = torch.hub.load('ailzhang/pytorch-pretrained-BERT:hubconf', 'bertTokenizer', 'bert-base-cased', do_basic_tokenize=False, force_reload=False)
>>> toks = tokenizer.tokenize(sentence)
['Hello', '##,', 'World', '##!']
>>> ids = tokenizer.convert_tokens_to_ids(toks)
[8667, 28136, 1291, 28125]
"""
tokenizer = BertTokenizer.from_pretrained(*args, **kwargs)
return tokenizer
@_append_from_pretrained_docstring(bert_docstring)
def bertModel(*args, **kwargs):
"""
BertModel is the basic BERT Transformer model with a layer of summed token,
position and sequence embeddings followed by a series of identical
self-attention blocks (12 for BERT-base, 24 for BERT-large).
"""
model = BertModel.from_pretrained(*args, **kwargs)
return model
@_append_from_pretrained_docstring(bert_docstring)
def bertForNextSentencePrediction(*args, **kwargs):
"""
BERT model with next sentence prediction head.
This module comprises the BERT model followed by the next sentence
classification head.
"""
model = BertForNextSentencePrediction.from_pretrained(*args, **kwargs)
return model
@_append_from_pretrained_docstring(bert_docstring)
def bertForPreTraining(*args, **kwargs):
"""
BERT model with pre-training heads.
This module comprises the BERT model followed by the two pre-training heads
- the masked language modeling head, and
- the next sentence classification head.
"""
model = BertForPreTraining.from_pretrained(*args, **kwargs)
return model
@_append_from_pretrained_docstring(bert_docstring)
def bertForMaskedLM(*args, **kwargs):
"""
BertForMaskedLM includes the BertModel Transformer followed by the
(possibly) pre-trained masked language modeling head.
"""
model = BertForMaskedLM.from_pretrained(*args, **kwargs)
return model
@_append_from_pretrained_docstring(bert_docstring)
def bertForSequenceClassification(*args, **kwargs):
"""
BertForSequenceClassification is a fine-tuning model that includes
BertModel and a sequence-level (sequence or pair of sequences) classifier
on top of the BertModel.
The sequence-level classifier is a linear layer that takes as input the
last hidden state of the first character in the input sequence
(see Figures 3a and 3b in the BERT paper).
"""
model = BertForSequenceClassification.from_pretrained(*args, **kwargs)
return model
@_append_from_pretrained_docstring(bert_docstring)
def bertForMultipleChoice(*args, **kwargs):
"""
BertForMultipleChoice is a fine-tuning model that includes BertModel and a
linear layer on top of the BertModel.
"""
model = BertForMultipleChoice.from_pretrained(*args, **kwargs)
return model
@_append_from_pretrained_docstring(bert_docstring)
def bertForQuestionAnswering(*args, **kwargs):
"""
BertForQuestionAnswering is a fine-tuning model that includes BertModel
with a token-level classifiers on top of the full sequence of last hidden
states.
"""
model = BertForQuestionAnswering.from_pretrained(*args, **kwargs)
return model
@_append_from_pretrained_docstring(bert_docstring)
def bertForTokenClassification(*args, **kwargs):
"""
BertForTokenClassification is a fine-tuning model that includes BertModel
and a token-level classifier on top of the BertModel.
The token-level classifier is a linear layer that takes as input the last
hidden state of the sequence.
"""
model = BertForTokenClassification.from_pretrained(*args, **kwargs)
return model