参与本项目,贡献其他语言版本的代码,拥抱开源,让更多学习算法的小伙伴们收益!
别看本篇选的是组合总和III,而不是组合总和,本题和上一篇77.组合相比难度刚刚好!
找出所有相加之和为 n 的 k 个数的组合。组合中只允许含有 1 - 9 的正整数,并且每种组合中不存在重复的数字。
说明:
- 所有数字都是正整数。
- 解集不能包含重复的组合。
示例 1: 输入: k = 3, n = 7 输出: [[1,2,4]]
示例 2: 输入: k = 3, n = 9 输出: [[1,2,6], [1,3,5], [2,3,4]]
《代码随想录》算法视频公开课:和组合问题有啥区别?回溯算法如何剪枝?| LeetCode:216.组合总和III,相信结合视频再看本篇题解,更有助于大家对本题的理解。
本题就是在[1,2,3,4,5,6,7,8,9]这个集合中找到和为n的k个数的组合。
相对于77. 组合,无非就是多了一个限制,本题是要找到和为n的k个数的组合,而整个集合已经是固定的了[1,...,9]。
想到这一点了,做过77. 组合之后,本题是简单一些了。
本题k相当于树的深度,9(因为整个集合就是9个数)就是树的宽度。
例如 k = 2,n = 4的话,就是在集合[1,2,3,4,5,6,7,8,9]中求 k(个数) = 2, n(和) = 4的组合。
选取过程如图:
图中,可以看出,只有最后取到集合(1,3)和为4 符合条件。
- 确定递归函数参数
和77. 组合一样,依然需要一维数组path来存放符合条件的结果,二维数组result来存放结果集。
这里我依然定义path 和 result为全局变量。
至于为什么取名为path?从上面树形结构中,可以看出,结果其实就是一条根节点到叶子节点的路径。
vector<vector<int>> result; // 存放结果集
vector<int> path; // 符合条件的结果
接下来还需要如下参数:
- targetSum(int)目标和,也就是题目中的n。
- k(int)就是题目中要求k个数的集合。
- sum(int)为已经收集的元素的总和,也就是path里元素的总和。
- startIndex(int)为下一层for循环搜索的起始位置。
所以代码如下:
vector<vector<int>> result;
vector<int> path;
void backtracking(int targetSum, int k, int sum, int startIndex)
其实这里sum这个参数也可以省略,每次targetSum减去选取的元素数值,然后判断如果targetSum为0了,说明收集到符合条件的结果了,我这里为了直观便于理解,还是加一个sum参数。
还要强调一下,回溯法中递归函数参数很难一次性确定下来,一般先写逻辑,需要啥参数了,填什么参数。
- 确定终止条件
什么时候终止呢?
在上面已经说了,k其实就已经限制树的深度,因为就取k个元素,树再往下深了没有意义。
所以如果path.size() 和 k相等了,就终止。
如果此时path里收集到的元素和(sum) 和targetSum(就是题目描述的n)相同了,就用result收集当前的结果。
所以 终止代码如下:
if (path.size() == k) {
if (sum == targetSum) result.push_back(path);
return; // 如果path.size() == k 但sum != targetSum 直接返回
}
- 单层搜索过程
本题和77. 组合区别之一就是集合固定的就是9个数[1,...,9],所以for循环固定i<=9
处理过程就是 path收集每次选取的元素,相当于树型结构里的边,sum来统计path里元素的总和。
代码如下:
for (int i = startIndex; i <= 9; i++) {
sum += i;
path.push_back(i);
backtracking(targetSum, k, sum, i + 1); // 注意i+1调整startIndex
sum -= i; // 回溯
path.pop_back(); // 回溯
}
别忘了处理过程 和 回溯过程是一一对应的,处理有加,回溯就要有减!
参照关于回溯算法,你该了解这些!中的模板,不难写出如下C++代码:
class Solution {
private:
vector<vector<int>> result; // 存放结果集
vector<int> path; // 符合条件的结果
// targetSum:目标和,也就是题目中的n。
// k:题目中要求k个数的集合。
// sum:已经收集的元素的总和,也就是path里元素的总和。
// startIndex:下一层for循环搜索的起始位置。
void backtracking(int targetSum, int k, int sum, int startIndex) {
if (path.size() == k) {
if (sum == targetSum) result.push_back(path);
return; // 如果path.size() == k 但sum != targetSum 直接返回
}
for (int i = startIndex; i <= 9; i++) {
sum += i; // 处理
path.push_back(i); // 处理
backtracking(targetSum, k, sum, i + 1); // 注意i+1调整startIndex
sum -= i; // 回溯
path.pop_back(); // 回溯
}
}
public:
vector<vector<int>> combinationSum3(int k, int n) {
result.clear(); // 可以不加
path.clear(); // 可以不加
backtracking(n, k, 0, 1);
return result;
}
};
这道题目,剪枝操作其实是很容易想到了,想必大家看上面的树形图的时候已经想到了。
已选元素总和如果已经大于n(图中数值为4)了,那么往后遍历就没有意义了,直接剪掉。
那么剪枝的地方可以放在递归函数开始的地方,剪枝代码如下:
if (sum > targetSum) { // 剪枝操作
return;
}
当然这个剪枝也可以放在 调用递归之前,即放在这里,只不过要记得 要回溯操作给做了。
for (int i = startIndex; i <= 9 - (k - path.size()) + 1; i++) { // 剪枝
sum += i; // 处理
path.push_back(i); // 处理
if (sum > targetSum) { // 剪枝操作
sum -= i; // 剪枝之前先把回溯做了
path.pop_back(); // 剪枝之前先把回溯做了
return;
}
backtracking(targetSum, k, sum, i + 1); // 注意i+1调整startIndex
sum -= i; // 回溯
path.pop_back(); // 回溯
}
和回溯算法:组合问题再剪剪枝 一样,for循环的范围也可以剪枝,i <= 9 - (k - path.size()) + 1就可以了。
最后C++代码如下:
class Solution {
private:
vector<vector<int>> result; // 存放结果集
vector<int> path; // 符合条件的结果
void backtracking(int targetSum, int k, int sum, int startIndex) {
if (sum > targetSum) { // 剪枝操作
return; // 如果path.size() == k 但sum != targetSum 直接返回
}
if (path.size() == k) {
if (sum == targetSum) result.push_back(path);
return;
}
for (int i = startIndex; i <= 9 - (k - path.size()) + 1; i++) { // 剪枝
sum += i; // 处理
path.push_back(i); // 处理
backtracking(targetSum, k, sum, i + 1); // 注意i+1调整startIndex
sum -= i; // 回溯
path.pop_back(); // 回溯
}
}
public:
vector<vector<int>> combinationSum3(int k, int n) {
result.clear(); // 可以不加
path.clear(); // 可以不加
backtracking(n, k, 0, 1);
return result;
}
};
开篇就介绍了本题与77.组合的区别,相对来说加了元素总和的限制,如果做完77.组合再做本题在合适不过。
分析完区别,依然把问题抽象为树形结构,按照回溯三部曲进行讲解,最后给出剪枝的优化。
相信做完本题,大家对组合问题应该有初步了解了。
模板方法
class Solution {
List<List<Integer>> result = new ArrayList<>();
LinkedList<Integer> path = new LinkedList<>();
public List<List<Integer>> combinationSum3(int k, int n) {
backTracking(n, k, 1, 0);
return result;
}
private void backTracking(int targetSum, int k, int startIndex, int sum) {
// 减枝
if (sum > targetSum) {
return;
}
if (path.size() == k) {
if (sum == targetSum) result.add(new ArrayList<>(path));
return;
}
// 减枝 9 - (k - path.size()) + 1
for (int i = startIndex; i <= 9 - (k - path.size()) + 1; i++) {
path.add(i);
sum += i;
backTracking(targetSum, k, i + 1, sum);
//回溯
path.removeLast();
//回溯
sum -= i;
}
}
}
// 上面剪枝 i <= 9 - (k - path.size()) + 1; 如果还是不清楚
// 也可以改为 if (path.size() > k) return; 执行效率上是一样的
class Solution {
LinkedList<Integer> path = new LinkedList<>();
List<List<Integer>> ans = new ArrayList<>();
public List<List<Integer>> combinationSum3(int k, int n) {
build(k, n, 1, 0);
return ans;
}
private void build(int k, int n, int startIndex, int sum) {
if (sum > n) return;
if (path.size() > k) return;
if (sum == n && path.size() == k) {
ans.add(new ArrayList<>(path));
return;
}
for(int i = startIndex; i <= 9; i++) {
path.add(i);
sum += i;
build(k, n, i + 1, sum);
sum -= i;
path.removeLast();
}
}
}
其他方法
class Solution {
List<List<Integer>> res = new ArrayList<>();
List<Integer> list = new ArrayList<>();
public List<List<Integer>> combinationSum3(int k, int n) {
res.clear();
list.clear();
backtracking(k, n, 9);
return res;
}
private void backtracking(int k, int n, int maxNum) {
if (k == 0 && n == 0) {
res.add(new ArrayList<>(list));
return;
}
// 因为不能重复,并且单个数字最大值是maxNum,所以sum最大值为
// (maxNum + (maxNum - 1) + ... + (maxNum - k + 1)) == k * maxNum - k*(k - 1) / 2
if (maxNum == 0
|| n > k * maxNum - k * (k - 1) / 2
|| n < (1 + k) * k / 2) {
return;
}
list.add(maxNum);
backtracking(k - 1, n - maxNum, maxNum - 1);
list.remove(list.size() - 1);
backtracking(k, n, maxNum - 1);
}
}
class Solution:
def __init__(self):
self.res = []
self.sum_now = 0
self.path = []
def combinationSum3(self, k: int, n: int) -> [[int]]:
self.backtracking(k, n, 1)
return self.res
def backtracking(self, k: int, n: int, start_num: int):
if self.sum_now > n: # 剪枝
return
if len(self.path) == k: # len(path)==k时不管sum是否等于n都会返回
if self.sum_now == n:
self.res.append(self.path[:])
return
for i in range(start_num, 10 - (k - len(self.path)) + 1):
self.path.append(i)
self.sum_now += i
self.backtracking(k, n, i + 1)
self.path.pop()
self.sum_now -= i
回溯+减枝
var (
res [][]int
path []int
)
func combinationSum3(k int, n int) [][]int {
res, path = make([][]int, 0), make([]int, 0, k)
dfs(k, n, 1, 0)
return res
}
func dfs(k, n int, start int, sum int) {
if len(path) == k {
if sum == n {
tmp := make([]int, k)
copy(tmp, path)
res = append(res, tmp)
}
return
}
for i := start; i <= 9; i++ {
if sum + i > n || 9-i+1 < k-len(path) {
break
}
path = append(path, i)
dfs(k, n, i+1, sum+i)
path = path[:len(path)-1]
}
}
/**
* @param {number} k
* @param {number} n
* @return {number[][]}
*/
var combinationSum3 = function(k, n) {
let res = [];
let path = [];
let sum = 0;
const dfs = (path,index) => {
// 剪枝操作
if (sum > n){
return
}
if (path.length == k) {
if(sum == n){
res.push([...path]);
return
}
}
for (let i = index; i <= 9 - (k-path.length) + 1;i++) {
path.push(i);
sum = sum + i;
index += 1;
dfs(path,index);
sum -= i
path.pop()
}
}
dfs(path,1);
return res
};
function combinationSum3(k: number, n: number): number[][] {
const resArr: number[][] = [];
function backTracking(k: number, n: number, sum: number, startIndex: number, tempArr: number[]): void {
if (sum > n) return;
if (tempArr.length === k) {
if (sum === n) {
resArr.push(tempArr.slice());
}
return;
}
for (let i = startIndex; i <= 9 - (k - tempArr.length) + 1; i++) {
tempArr.push(i);
backTracking(k, n, sum + i, i + 1, tempArr);
tempArr.pop();
}
}
backTracking(k, n, 0, 1, []);
return resArr;
};
impl Solution {
pub fn combination_sum3(k: i32, n: i32) -> Vec<Vec<i32>> {
let mut result = vec![];
let mut path = vec![];
Self::backtrace(&mut result, &mut path, n, k, 0, 1);
result
}
pub fn backtrace(
result: &mut Vec<Vec<i32>>,
path: &mut Vec<i32>,
target_sum: i32,
k: i32,
sum: i32,
start_index: i32,
) {
if sum > target_sum {
return;
}
let len = path.len() as i32;
if len == k {
if sum == target_sum {
result.push(path.to_vec());
}
return;
}
for i in start_index..=9 - (k - len) + 1 {
path.push(i);
Self::backtrace(result, path, target_sum, k, sum + i, i + 1);
path.pop();
}
}
}
int* path;
int pathTop;
int** ans;
int ansTop;
int getPathSum() {
int i;
int sum = 0;
for(i = 0; i < pathTop; i++) {
sum += path[i];
}
return sum;
}
void backtracking(int targetSum, int k, int sum, int startIndex) {
if(pathTop == k) {
if(sum == targetSum) {
int* tempPath = (int*)malloc(sizeof(int) * k);
int j;
for(j = 0; j < k; j++)
tempPath[j] = path[j];
ans[ansTop++] = tempPath;
}
// 如果path.size() == k 但sum != targetSum 直接返回
return;
}
int i;
//从startIndex开始遍历,一直遍历到9
for (i = startIndex; i <= 9; i++) {
sum += i; // 处理
path[pathTop++] = i; // 处理
backtracking(targetSum, k, sum, i + 1); // 注意i+1调整startIndex
sum -= i; // 回溯
pathTop--;; // 回溯
}
}
int** combinationSum3(int k, int n, int* returnSize, int** returnColumnSizes){
//初始化辅助变量
path = (int*)malloc(sizeof(int) * k);
ans = (int**)malloc(sizeof(int*) * 20);
pathTop = ansTop = 0;
backtracking(n, k, 0, 1);
//设置返回的二维数组中元素个数为ansTop
*returnSize = ansTop;
//设置二维数组中每个元素个数的大小为k
*returnColumnSizes = (int*)malloc(sizeof(int) * ansTop);
int i;
for(i = 0; i < ansTop; i++) {
(*returnColumnSizes)[i] = k;
}
return ans;
}
func combinationSum3(_ count: Int, _ targetSum: Int) -> [[Int]] {
var result = [[Int]]()
var path = [Int]()
func backtracking(sum: Int, start: Int) {
// 剪枝
if sum > targetSum { return }
// 终止条件
if path.count == count {
if sum == targetSum {
result.append(path)
}
return
}
// 单层逻辑
let end = 9
guard start <= end else { return }
for i in start ... end {
path.append(i) // 处理
backtracking(sum: sum + i, start: i + 1)
path.removeLast() // 回溯
}
}
backtracking(sum: 0, start: 1)
return result
}
object Solution {
import scala.collection.mutable
def combinationSum3(k: Int, n: Int): List[List[Int]] = {
var result = mutable.ListBuffer[List[Int]]()
var path = mutable.ListBuffer[Int]()
def backtracking(k: Int, n: Int, sum: Int, startIndex: Int): Unit = {
if (sum > n) return // 剪枝,如果sum>目标和,就返回
if (sum == n && path.size == k) {
result.append(path.toList)
return
}
// 剪枝
for (i <- startIndex to (9 - (k - path.size) + 1)) {
path.append(i)
backtracking(k, n, sum + i, i + 1)
path = path.take(path.size - 1)
}
}
backtracking(k, n, 0, 1) // 调用递归方法
result.toList // 最终返回结果集的List形式
}
}